Create README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,229 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
language:
|
4 |
-
- en
|
5 |
base_model:
|
6 |
-
- black-forest-labs/FLUX.1-dev
|
7 |
-
- Qwen/Qwen2-VL-7B-Instruct
|
8 |
library_name: diffusers
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
language:
|
4 |
+
- en
|
5 |
base_model:
|
6 |
+
- black-forest-labs/FLUX.1-dev
|
7 |
+
- Qwen/Qwen2-VL-7B-Instruct
|
8 |
library_name: diffusers
|
9 |
+
tags:
|
10 |
+
- flux
|
11 |
+
- qwen2vl
|
12 |
+
- stable-diffusion
|
13 |
+
- text-to-image
|
14 |
+
- image-to-image
|
15 |
+
- controlnet
|
16 |
+
pipeline_tag: text-to-image
|
17 |
+
---
|
18 |
+
|
19 |
+
# Qwen2vl-Flux
|
20 |
+
|
21 |
+
<div align="center">
|
22 |
+
<img src="landing-1.png" alt="Qwen2vl-Flux Banner" width="100%">
|
23 |
+
</div>
|
24 |
+
|
25 |
+
Qwen2vl-Flux is a state-of-the-art multimodal image generation model that enhances FLUX with Qwen2VL's vision-language understanding capabilities. This model excels at generating high-quality images based on both text prompts and visual references, offering superior multimodal understanding and control.
|
26 |
+
|
27 |
+
## Model Architecture
|
28 |
+
|
29 |
+
<div align="center">
|
30 |
+
<img src="flux-architecture.svg" alt="Flux Architecture" width="800px">
|
31 |
+
</div>
|
32 |
+
|
33 |
+
The model integrates Qwen2VL's vision-language capabilities into the FLUX framework, enabling more precise and context-aware image generation. Key components include:
|
34 |
+
- Vision-Language Understanding Module (Qwen2VL)
|
35 |
+
- Enhanced FLUX backbone
|
36 |
+
- Multi-mode Generation Pipeline
|
37 |
+
- Structural Control Integration
|
38 |
+
|
39 |
+
## Features
|
40 |
+
|
41 |
+
- **Enhanced Vision-Language Understanding**: Leverages Qwen2VL for superior multimodal comprehension
|
42 |
+
- **Multiple Generation Modes**: Supports variation, img2img, inpainting, and controlnet-guided generation
|
43 |
+
- **Structural Control**: Integrates depth estimation and line detection for precise structural guidance
|
44 |
+
- **Flexible Attention Mechanism**: Supports focused generation with spatial attention control
|
45 |
+
- **High-Resolution Output**: Supports various aspect ratios up to 1536x1024
|
46 |
+
|
47 |
+
## Generation Examples
|
48 |
+
|
49 |
+
### Image Variation
|
50 |
+
Create diverse variations while maintaining the essence of the original image:
|
51 |
+
|
52 |
+
<div align="center">
|
53 |
+
<table>
|
54 |
+
<tr>
|
55 |
+
<td><img src="variation_1.png" alt="Variation Example 1" width="256px"></td>
|
56 |
+
<td><img src="variation_2.png" alt="Variation Example 2" width="256px"></td>
|
57 |
+
<td><img src="variation_3.png" alt="Variation Example 3" width="256px"></td>
|
58 |
+
</tr>
|
59 |
+
<tr>
|
60 |
+
<td><img src="variation_4.png" alt="Variation Example 4" width="256px"></td>
|
61 |
+
<td><img src="variation_5.png" alt="Variation Example 5" width="256px"></td>
|
62 |
+
</tr>
|
63 |
+
</table>
|
64 |
+
</div>
|
65 |
+
|
66 |
+
### Image Blending
|
67 |
+
Seamlessly blend multiple images with intelligent style transfer:
|
68 |
+
|
69 |
+
<div align="center">
|
70 |
+
<table>
|
71 |
+
<tr>
|
72 |
+
<td><img src="blend_1.png" alt="Blend Example 1" width="256px"></td>
|
73 |
+
<td><img src="blend_2.png" alt="Blend Example 2" width="256px"></td>
|
74 |
+
<td><img src="blend_3.png" alt="Blend Example 3" width="256px"></td>
|
75 |
+
</tr>
|
76 |
+
<tr>
|
77 |
+
<td><img src="blend_4.png" alt="Blend Example 4" width="256px"></td>
|
78 |
+
<td><img src="blend_5.png" alt="Blend Example 5" width="256px"></td>
|
79 |
+
<td><img src="blend_6.png" alt="Blend Example 6" width="256px"></td>
|
80 |
+
</tr>
|
81 |
+
<tr>
|
82 |
+
<td><img src="blend_7.png" alt="Blend Example 7" width="256px"></td>
|
83 |
+
</tr>
|
84 |
+
</table>
|
85 |
+
</div>
|
86 |
+
|
87 |
+
### Text-Guided Image Blending
|
88 |
+
Control image generation with textual prompts:
|
89 |
+
|
90 |
+
<div align="center">
|
91 |
+
<table>
|
92 |
+
<tr>
|
93 |
+
<td><img src="textblend_1.png" alt="Text Blend Example 1" width="256px"></td>
|
94 |
+
<td><img src="textblend_2.png" alt="Text Blend Example 2" width="256px"></td>
|
95 |
+
<td><img src="textblend_3.png" alt="Text Blend Example 3" width="256px"></td>
|
96 |
+
</tr>
|
97 |
+
<tr>
|
98 |
+
<td><img src="textblend_4.png" alt="Text Blend Example 4" width="256px"></td>
|
99 |
+
<td><img src="textblend_5.png" alt="Text Blend Example 5" width="256px"></td>
|
100 |
+
<td><img src="textblend_6.png" alt="Text Blend Example 6" width="256px"></td>
|
101 |
+
</tr>
|
102 |
+
<tr>
|
103 |
+
<td><img src="textblend_7.png" alt="Text Blend Example 7" width="256px"></td>
|
104 |
+
<td><img src="textblend_8.png" alt="Text Blend Example 8" width="256px"></td>
|
105 |
+
<td><img src="textblend_9.png" alt="Text Blend Example 9" width="256px"></td>
|
106 |
+
</tr>
|
107 |
+
</table>
|
108 |
+
</div>
|
109 |
+
|
110 |
+
### Grid-Based Style Transfer
|
111 |
+
Apply fine-grained style control with grid attention:
|
112 |
+
|
113 |
+
<div align="center">
|
114 |
+
<table>
|
115 |
+
<tr>
|
116 |
+
<td><img src="griddot_1.png" alt="Grid Example 1" width="256px"></td>
|
117 |
+
<td><img src="griddot_2.png" alt="Grid Example 2" width="256px"></td>
|
118 |
+
<td><img src="griddot_3.png" alt="Grid Example 3" width="256px"></td>
|
119 |
+
</tr>
|
120 |
+
<tr>
|
121 |
+
<td><img src="griddot_4.png" alt="Grid Example 4" width="256px"></td>
|
122 |
+
<td><img src="griddot_5.png" alt="Grid Example 5" width="256px"></td>
|
123 |
+
<td><img src="griddot_6.png" alt="Grid Example 6" width="256px"></td>
|
124 |
+
</tr>
|
125 |
+
<tr>
|
126 |
+
<td><img src="griddot_7.png" alt="Grid Example 7" width="256px"></td>
|
127 |
+
<td><img src="griddot_8.png" alt="Grid Example 8" width="256px"></td>
|
128 |
+
<td><img src="griddot_9.png" alt="Grid Example 9" width="256px"></td>
|
129 |
+
</tr>
|
130 |
+
</table>
|
131 |
+
</div>
|
132 |
+
|
133 |
+
## Usage
|
134 |
+
|
135 |
+
The inference code is available via our [GitHub repository](https://github.com/erwold/qwen2vl-flux) which provides comprehensive Python interfaces and examples.
|
136 |
+
|
137 |
+
### Installation
|
138 |
+
|
139 |
+
1. Clone the repository and install dependencies:
|
140 |
+
```bash
|
141 |
+
git clone https://github.com/erwold/qwen2vl-flux
|
142 |
+
cd flux
|
143 |
+
pip install -r requirements.txt
|
144 |
+
```
|
145 |
+
|
146 |
+
2. Download model checkpoints from Hugging Face:
|
147 |
+
```python
|
148 |
+
from huggingface_hub import snapshot_download
|
149 |
+
|
150 |
+
snapshot_download("Djrango/Qwen2vl-Flux")
|
151 |
+
```
|
152 |
+
|
153 |
+
### Basic Examples
|
154 |
+
|
155 |
+
```python
|
156 |
+
from model import FluxModel
|
157 |
+
|
158 |
+
# Initialize model
|
159 |
+
model = FluxModel(device="cuda")
|
160 |
+
|
161 |
+
# Image Variation
|
162 |
+
outputs = model.generate(
|
163 |
+
input_image_a=input_image,
|
164 |
+
prompt="Your text prompt",
|
165 |
+
mode="variation"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Image Blending
|
169 |
+
outputs = model.generate(
|
170 |
+
input_image_a=source_image,
|
171 |
+
input_image_b=reference_image,
|
172 |
+
mode="img2img",
|
173 |
+
denoise_strength=0.8
|
174 |
+
)
|
175 |
+
|
176 |
+
# Text-Guided Blending
|
177 |
+
outputs = model.generate(
|
178 |
+
input_image_a=input_image,
|
179 |
+
prompt="Transform into an oil painting style",
|
180 |
+
mode="variation",
|
181 |
+
guidance_scale=7.5
|
182 |
+
)
|
183 |
+
|
184 |
+
# Grid-Based Style Transfer
|
185 |
+
outputs = model.generate(
|
186 |
+
input_image_a=content_image,
|
187 |
+
input_image_b=style_image,
|
188 |
+
mode="controlnet",
|
189 |
+
line_mode=True,
|
190 |
+
depth_mode=True
|
191 |
+
)
|
192 |
+
```
|
193 |
+
|
194 |
+
## Technical Specifications
|
195 |
+
|
196 |
+
- **Framework**: PyTorch 2.4.1+
|
197 |
+
- **Base Models**:
|
198 |
+
- FLUX.1-dev
|
199 |
+
- Qwen2-VL-7B-Instruct
|
200 |
+
- **Memory Requirements**: 48GB+ VRAM
|
201 |
+
- **Supported Image Sizes**:
|
202 |
+
- 1024x1024 (1:1)
|
203 |
+
- 1344x768 (16:9)
|
204 |
+
- 768x1344 (9:16)
|
205 |
+
- 1536x640 (2.4:1)
|
206 |
+
- 896x1152 (3:4)
|
207 |
+
- 1152x896 (4:3)
|
208 |
+
|
209 |
+
|
210 |
+
## Citation
|
211 |
+
|
212 |
+
```bibtex
|
213 |
+
@misc{erwold-2024-qwen2vl-flux,
|
214 |
+
title={Qwen2VL-Flux: Unifying Image and Text Guidance for Controllable Image Generation},
|
215 |
+
author={Pengqi Lu},
|
216 |
+
year={2024},
|
217 |
+
url={https://github.com/erwold/qwen2vl-flux}
|
218 |
+
}
|
219 |
+
```
|
220 |
+
|
221 |
+
## License
|
222 |
+
|
223 |
+
This project is licensed under the MIT License. See [LICENSE](LICENSE) for details.
|
224 |
+
|
225 |
+
## Acknowledgments
|
226 |
+
|
227 |
+
- Based on the FLUX architecture
|
228 |
+
- Integrates Qwen2VL for vision-language understanding
|
229 |
+
- Thanks to the open-source communities of FLUX and Qwen
|