metadata
license: other
license_name: bespoke-lora-trained-license
license_link: >-
https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=True&allowDifferentLicense=False
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- concept
- action figure
- figure
- toy
- concpet
- xl lora
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: toy
widget:
- text: ' toy, photo George w bush mission accomplished'
output:
url: 3328637.jpeg
- text: ' toy fall autumn pepe'
output:
url: 3328917.jpeg
- text: ' toy, photo goku on a skateboard,'
output:
url: 3328638.jpeg
- text: ' toy bill Clinton Saxaphone'
output:
url: 3329095.jpeg
- text: ' toy dogs playing poker'
output:
url: 3328796.jpeg
- text: ' toy photo nicolas cage car'
output:
url: 3328734.jpeg
Doctor Diffusion's Toy XL Style LoRA
Model description
Use "toy" in prompt.
☕ Like what I do? ☕
☕ Buy me a coffee or two! ☕
Trigger words
You should use toy
, photo
to trigger the image generation.
Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('DoctorDiffusion/doctor-diffusion-s-toy-xl-style-lora', weight_name='DD-toy-v2.safetensors')
image = pipeline(' toy photo nicolas cage car').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers