Doowon96's picture
End of training
4d5bfd2 verified
|
raw
history blame
2.38 kB
metadata
base_model: klue/roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-base-finetuned-tc
    results: []

roberta-base-finetuned-tc

This model is a fine-tuned version of klue/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5805
  • Accuracy: 0.8378
  • F1: 0.8303
  • Precision: 0.8386
  • Recall: 0.8378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 13 1.4532 0.4777 0.3088 0.2282 0.4777
No log 2.0 26 1.1224 0.6190 0.5210 0.4641 0.6190
No log 3.0 39 0.8175 0.7560 0.7238 0.7040 0.7560
No log 4.0 52 0.7069 0.7932 0.7712 0.7526 0.7932
No log 5.0 65 0.6515 0.8110 0.7895 0.7705 0.8110
No log 6.0 78 0.6212 0.8170 0.7983 0.8023 0.8170
No log 7.0 91 0.6025 0.8304 0.8163 0.8395 0.8304
No log 8.0 104 0.5982 0.8318 0.8238 0.8330 0.8318
No log 9.0 117 0.5815 0.8348 0.8260 0.8344 0.8348
No log 10.0 130 0.5805 0.8378 0.8303 0.8386 0.8378

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2