--- language: - ko license: cc-by-nc-sa-4.0 library_name: transformers tags: - moe - merge pipeline_tag: text-generation model-index: - name: SOLARC-MOE-10.7Bx4 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.43 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.34 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.91 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx4 name: Open LLM Leaderboard --- **The license is `cc-by-nc-sa-4.0`.** # **🐻‍❄️SOLARC-MOE-10.7Bx4🐻‍❄️** ![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG) ## Model Details **Model Developers** Seungyoo Lee(DopeorNope) I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** SOLARC-MOE-10.7Bx4 is an auto-regressive language model based on the SOLAR architecture. --- ## **Base Model** [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) [Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co/Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct) [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct) [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) ## **Implemented Method** I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base. --- # Implementation Code ## Load model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "DopeorNope/SOLARC-MOE-10.7Bx4" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DopeorNope__SOLARC-MOE-10.7Bx4) | Metric |Value| |---------------------------------|----:| |Avg. |74.27| |AI2 Reasoning Challenge (25-Shot)|70.99| |HellaSwag (10-Shot) |88.43| |MMLU (5-Shot) |66.34| |TruthfulQA (0-shot) |71.91| |Winogrande (5-shot) |83.58| |GSM8k (5-shot) |64.37|