Dotanoob commited on
Commit
e34a77f
1 Parent(s): 9533c8d

Upload unit-1 trained LunarLander agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 187.55 +/- 90.97
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 265.45 +/- 14.37
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3856af5ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3856af5b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3856af5bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3856af5c60>", "_build": "<function ActorCriticPolicy._build at 0x7f3856af5cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3856af5d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3856af5e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3856af5ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3856af5f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3856af5fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3856af6050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3856af60e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3856a87680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700637344573792186, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3lRz7o1pq8avJTOxa8rLl2Gwm+rluJugAAgD8AAIA/7aZKPtJdlDxBLTy7FKWiuR1IJD742Xc6AACAPwAAgD+TekQ+m5rNvOIqFzt0fY65h6kyvnOCg7oAAIA/AACAP0DSMb4Ogo+811sYO2pujDkOT/09ooN5ugAAgD8AAIA/vS2qvmkSlT5pwA899MfIvnfXn72zQ/m7AAAAAAAAAAAAmpM++PqxPOA2LLveaZG5+rcePoWNMjIAAIA/AACAP8bNNL6b4qy8xhGaOkxw+TgcGhU+mrXNuQAAgD8AAIA/gDQ8PhQ/wrzDL2U5qyizt8sDKr6is5m4AACAPwAAgD9twAc+KewIOQNx/Dfh7Gk0L3XiOzEQFLcAAIA/AACAP1oZiT7IKL28Rre9ux7ozDnNpCS+4eegOgAAgD8AAIA/ja4ivijIij+XkIu+G7kTv37y0r2eOEq9AAAAAAAAAADdt9K+BnWsPgZZvzxASqS+W7e0vaLneD0AAAAAAAAAAMCJIL4fvj4+1sh3PUStXL4MSlK8kwH0uwAAAAAAAAAA1g9yvkiarj3vEQO8HqJAvk8zbbzg+zi9AAAAAAAAAADNsqK9XA9sujCdZbpxRYe1j9wcu1LCgzkAAIA/AAAAADN2jrzN/E0/ynmuvDzFA79DMxu6fs6bPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAMmVeKKpGMAWyUTQABjAF0lEdAm9DVyBClanV9lChoBkdAbOup8WsRx2gHS/NoCEdAm9EkE1VHWnV9lChoBkdAbHHHxSYPXmgHS/xoCEdAm9EoG6f8M3V9lChoBkdAY0pugpSaVmgHTegDaAhHQJvSrLQokRl1fZQoaAZHQHA6b2USqVBoB00gAWgIR0Cb0xjgQ6IWdX2UKGgGR0BvzHV5KODKaAdL5GgIR0Cb1HPva11GdX2UKGgGR0BvQUvEjxCqaAdNAAFoCEdAm9S2M4tHx3V9lChoBkdAOM5LIxQBP2gHS91oCEdAm9ZhR/EwWXV9lChoBkdAbrvv863iJmgHTQsBaAhHQJvXMTFl05l1fZQoaAZHQHD2qL4vexhoB00xAWgIR0Cb2R0VafSQdX2UKGgGR0Bt6UC9ytFKaAdNIQFoCEdAm9pD4tYjjnV9lChoBkdAcAjf4yoGZGgHTQEBaAhHQJvavk6tDD11fZQoaAZHQG9qYuK4x1xoB01yAWgIR0Cb27ffGdZrdX2UKGgGR0Bu8ebwz+FUaAdL6mgIR0Cb3FGb1AZ9dX2UKGgGR0BvrSzNUwSKaAdL6WgIR0Cb3E5LytmudX2UKGgGR0Bw5NUHY6GQaAdL22gIR0CcOg35vcagdX2UKGgGR0Bvlp4D9wWFaAdNIgFoCEdAnDrL9ycTanV9lChoBkdAbqPTsIE8rGgHS+FoCEdAnDuJ/smfG3V9lChoBkdAcaPUWVNYbWgHS81oCEdAnDw1dszl93V9lChoBkdAbUBufEn9emgHTQYBaAhHQJw85IVdonN1fZQoaAZHQHBzeFlCkXVoB00fAWgIR0CcQV/oaDPGdX2UKGgGR0BuNUHB1s+FaAdNBQFoCEdAnEGKCYkVvnV9lChoBkdAcEENLDhtL2gHS+toCEdAnEGy04R283V9lChoBkdAbRmvnKW9lGgHTVgBaAhHQJxCRAPd2xJ1fZQoaAZHQHCh6eTV2A5oB00lAWgIR0CcQn99MK1HdX2UKGgGR0BwQAlE7W/baAdL0WgIR0CcQqK9f1HwdX2UKGgGR0Bq2Y2OyVv/aAdNAwFoCEdAnEKwKa5PM3V9lChoBkdAcRhthNM4+GgHS+9oCEdAnELScLBsRHV9lChoBkdAbseSVW0Z32gHTTEBaAhHQJxDx6dDpkh1fZQoaAZHQGvFvVEuxr1oB0vuaAhHQJxEX029+PR1fZQoaAZHQG8mBHTZxrBoB0vpaAhHQJxE6WE9Mbp1fZQoaAZHQGzllyzXz19oB00HAWgIR0CcRqXoTwlTdX2UKGgGR0BwLrAEdNnHaAdL4mgIR0CcSqDFZPl/dX2UKGgGR0BsG/lGPPszaAdL/mgIR0CcSvTUy57PdX2UKGgGR0Bv8pxvNu+AaAdNBwFoCEdAnEtF6NVBEHV9lChoBkdAb4+rYoRZlmgHS+5oCEdAnEumCiAUcnV9lChoBkdAcS/oy9EkSmgHS/doCEdAnExr4i5d4XV9lChoBkdAcMT3/giu+2gHS9hoCEdAnExmc8TzunV9lChoBkdAb/UDBdld1WgHTRcBaAhHQJxNZPbfxc51fZQoaAZHQHDr9s7+1jRoB007AWgIR0CcTpIXCTEBdX2UKGgGR0BgbsHbAUL2aAdN6ANoCEdAnE67Gza9K3V9lChoBkdAbSs3HaN+9mgHS+1oCEdAnE9XOW0JGHV9lChoBkdAcACL876pHmgHTQgBaAhHQJxP3Nu+AVh1fZQoaAZHQGomUqQRwqBoB00QAWgIR0CcU4UExIrfdX2UKGgGR0BhhnSpiqhlaAdN6ANoCEdAnFT7M5fdAXV9lChoBkdAbzOGlANXo2gHS9xoCEdAnFY00zj3mHV9lChoBkdAX61pGnXNDGgHTegDaAhHQJxW2k1uR9x1fZQoaAZHQHFd5f2K2rpoB0vaaAhHQJxXfalDWsl1fZQoaAZHQEbIYgJTl1doB0u7aAhHQJxYFl+Vkc11fZQoaAZHQHCO1Fx4pttoB0v0aAhHQJxYztXxOL11fZQoaAZHQHB5fq5byH5oB00FAWgIR0CcWQBAv+OwdX2UKGgGR0BwnGVAzHjqaAdL+WgIR0CcWdTrE9+xdX2UKGgGR0AZveSB9TgmaAdL+WgIR0CcWtt2cJ+ldX2UKGgGR0BhNoskIHC5aAdN6ANoCEdAnFuy+g13uHV9lChoBkdAbhracI7eVWgHTVwBaAhHQJxcwSzw+dN1fZQoaAZHQG9ziV0Lc9JoB006AWgIR0CcX0ISDh99dX2UKGgGR0BtEQ+lj3EiaAdNAwFoCEdAnGIM6zVtoHV9lChoBkdAb/vhrnDBM2gHS9hoCEdAnGP5RbbDdnV9lChoBkdARDVcMVk+YGgHS8loCEdAnGRxK+SKWXV9lChoBkdAQBO/vfCQ92gHS79oCEdAnGUfH1e0HHV9lChoBkdAbdkuieumrWgHS/toCEdAnGUtjG1hLHV9lChoBkdAchJEX+ERJ2gHTT8BaAhHQJxmtnbqQil1fZQoaAZHQHDwFcUuctpoB00IAWgIR0CcZtlpGnXNdX2UKGgGR0BrsXu9eyAyaAdNXgFoCEdAnGi9Nvfj0nV9lChoBkdAcFz4tHxz72gHTQYBaAhHQJxr4iC8OCp1fZQoaAZHQHCh+vMbFS9oB0vTaAhHQJxtXBEa2nd1fZQoaAZHQG4lSlenhsJoB00CAWgIR0Ccb1MuvlltdX2UKGgGR0BwBCLrHEMtaAdNLgFoCEdAnG/lbiZOSHV9lChoBkdAYpC+/xlQM2gHTegDaAhHQJxwwm4RVZN1fZQoaAZHQHBYWsq8UVVoB00PAWgIR0CcclKP4mCzdX2UKGgGR0BwkZCngpBpaAdL+2gIR0Ccc0S3b212dX2UKGgGR0BxCdpSJj2BaAdNbwFoCEdAnHUNe6ZpjHV9lChoBkdAM7NWU8mrsGgHS8JoCEdAnHYqIi1RcnV9lChoBkdAbmWWTHKfWmgHTScCaAhHQJx2dgPVd5Z1fZQoaAZHQHBotNahYeVoB00zAWgIR0CceWyWzF/AdX2UKGgGR0BwyXX8O09haAdL9mgIR0Cceh76YVqOdX2UKGgGR0BebexwAEMcaAdN6ANoCEdAnHqdtdiUgXV9lChoBkdAcaYBFd9lVmgHS/loCEdAnHrIJZ4fOnV9lChoBkdAbmRitq59VmgHS+1oCEdAnHsO7Dl5nnV9lChoBkdAbwfEKE3842gHS/BoCEdAnH16Oo5xR3V9lChoBkdAb1xjUd7v5WgHTQwBaAhHQJx9xbVz6rN1fZQoaAZHQGAunqmj0thoB03oA2gIR0CcfeTOgQHzdX2UKGgGR0Bvr8t7KJVKaAdNBQFoCEdAnH/n0kGA1HV9lChoBkdAYQpZpSJj2GgHTegDaAhHQJyBLhZQpF11fZQoaAZHQG3P1QAMlTpoB0vXaAhHQJyDYD9wWFh1fZQoaAZHQG58t2TxG2FoB0vYaAhHQJyDrX6InBt1fZQoaAZHQGJUKUu+RHRoB03oA2gIR0CchGM4tHx0dX2UKGgGR0BxFmx1PnB+aAdL+GgIR0CchKIvrWy1dX2UKGgGR0BsLmMfigkDaAdN6wJoCEdAnITTtw71ZnV9lChoBkdAcfBIyTINmWgHTRIBaAhHQJyFL3ai9Ix1fZQoaAZHQHC3Z7PY4AFoB0vaaAhHQJyGPX6InBt1fZQoaAZHQHBdBB/qgRNoB0vtaAhHQJyGhVea8Yh1fZQoaAZHQGR/xGtp22ZoB03oA2gIR0Cch1RQ79ycdX2UKGgGR0BuN6hUR3/xaAdL6GgIR0CciGfF72L6dX2UKGgGR0Bv3c0UGmk4aAdNFAJoCEdAnIr6dxyXD3V9lChoBkdAb++3hn8KomgHS89oCEdAnIt9+5OJtXV9lChoBkdAbtYsMAmzB2gHS+RoCEdAnIuowdsBQ3V9lChoBkdAbx48scyWRmgHS9hoCEdAnIwoi5d4V3V9lChoBkdAcDq1fVqesmgHTRsBaAhHQJyOqajN6gN1fZQoaAZHQGB2mHHmzSloB03oA2gIR0CcjtBN21UmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efa3b0e30a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efa3b0e3130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efa3b0e31c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efa3b0e3250>", "_build": "<function ActorCriticPolicy._build at 0x7efa3b0e32e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efa3b0e3370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efa3b0e3400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efa3b0e3490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efa3b0e3520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efa3b0e35b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efa3b0e3640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efa3b0e36d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efa3b287640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701158964424817545, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMKpLzDhWq6UUm9O3u20zg4efq60G3uuAAAgD8AAIA/M8OiuingHrp6GsE5u8wbNYZwkjsA39+4AACAPwAAgD8zlaM8SDeququKbDrxL101rGc7Oh6+h7kAAIA/AACAP03Rt75LETU/AmlwvmuMw77c+te+Tk6APAAAAAAAAAAAANhJveGS5jlNltC7D9gmPZp6i7sGs9m7AACAPwAAgD/z6ba9UBKsPq53Nz4aibO+cp82PSb6j70AAAAAAAAAAGYRwjwf/Zy5MKthO6mQRDh6ezy6w+MMugAAgD8AAIA/muWmu4l1uT/m5AO+Y7bDPgFqvjtgXuw8AAAAAAAAAADN5PI7BcH3uxTklT07Yhe+21VYvYZbAb8AAIA/AACAP81MUL1cc1C6JsyKNpXVlTF8aos7nsWotQAAgD8AAIA/M2LwPI+2aLo+/eg60927NaUVZTrKuwi6AACAPwAAgD9m8Fs9uD22PUay5L17F2++CjVSPem6HjwAAAAAAAAAACakrz0beDU/uscSvTJ+or5ntEU70scJvQAAAAAAAAAA5rliPuQzLj/Lq8m9DLmpvi0c6D0jEWe9AAAAAAAAAAAzr+u9BA9BPvBm2z3HBUu+kjNgOrkqIr0AAAAAAAAAAGaYZbzDyRG6uWS/O3afGjhXoq26AEI7NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/2Z9Vmz0KMAWyUTUMBjAF0lEdAlFbESRKYiXV9lChoBkdAcC6+mm+Cb2gHTS0BaAhHQJRYSZof0Vd1fZQoaAZHQHBsyWAwwkBoB02hAWgIR0CUWJ5xR2r5dX2UKGgGR0BuG5o4+8oQaAdNIAFoCEdAlFjwFs54nnV9lChoBkdAb38s052hZmgHTTQBaAhHQJRZY/4ZdfN1fZQoaAZHQHCxF8LKFIxoB01FAWgIR0CUW+B42S+ydX2UKGgGR0BwXueDnNgSaAdNNwFoCEdAlFvrpNbkfnV9lChoBkdAcmHF2V3Ux2gHTY4BaAhHQJRcOlsP8Q91fZQoaAZHQHLLFbNbC79oB01QAWgIR0CUXES1E3KkdX2UKGgGR0Bx+2coYvWZaAdNggFoCEdAlF0tPLxI8XV9lChoBkdAcDEzBhx5s2gHTTgBaAhHQJRfQ1Gb1AZ1fZQoaAZHQHGZr70nPVxoB01kAWgIR0CUX266asp5dX2UKGgGR0BvFZQHiWE9aAdNKgFoCEdAlF/zMzMzM3V9lChoBkdAcAsvtMPBi2gHTSoBaAhHQJRyTiEQGwB1fZQoaAZHQGz0J/wy6+ZoB00ZAWgIR0CUclaOPvKEdX2UKGgGR0BvMEpmVZ9vaAdNIQFoCEdAlHLKNMoMKHV9lChoBkdAcUqI0IkZ8GgHTRYBaAhHQJR0Gbz9S/F1fZQoaAZHQG9chzNliBpoB00UAWgIR0CUdNMYdhiLdX2UKGgGR0Bt6zBGhEjPaAdNLgFoCEdAlHVBG2Cul3V9lChoBkdAcIH00WM0g2gHTUwBaAhHQJR1ojjaPCF1fZQoaAZHQHC5cK1G9YhoB00GAWgIR0CUdtXokiUxdX2UKGgGR0BwQnbDdgv2aAdNCAFoCEdAlHbv5P/JeXV9lChoBkdAcG4C7btZ3mgHTTUBaAhHQJR45+z+m3x1fZQoaAZHQHFCluWKMvRoB00eAWgIR0CUfCbgTAWSdX2UKGgGR0BwqXgJkXk6aAdNZAFoCEdAlH0UpZwGW3V9lChoBkdAbZiUSIxgzGgHTSwBaAhHQJR9UvWYnfF1fZQoaAZHQHDlhk/bCaZoB00QAWgIR0CUfgMspXp4dX2UKGgGR0BxI/3nIQvpaAdNEAFoCEdAlIA/029+PXV9lChoBkdAbdZ/ffoA4mgHTVgBaAhHQJSBY8EFGG51fZQoaAZHQGyobF0gbIdoB01hAWgIR0CUgf7muDBedX2UKGgGR0Bw5EigTRICaAdNlgFoCEdAlIRR6OYIB3V9lChoBkdAcOFL5AQg92gHTSsBaAhHQJSEiOPvKEF1fZQoaAZHQG7mrsjVx0doB01IAWgIR0CUhM5aNdZ8dX2UKGgGR0Bgju2Xsw+MaAdN6ANoCEdAlIUcI/qxDHV9lChoBkdAcfcL0Bfa6GgHTXQBaAhHQJSHYYyfthN1fZQoaAZHQHBz+7L+xW1oB01KAmgIR0CUh/pKSPludX2UKGgGR0BzDIM+eOGTaAdNbgFoCEdAlImMcABDHHV9lChoBkdAcAI/Ue+23WgHTRwBaAhHQJSLXPt2LYR1fZQoaAZHQHAX4xHoX9BoB00KAWgIR0CUjPU+cH4XdX2UKGgGR0BwebILgGbDaAdNPQFoCEdAlIz8XN1QqXV9lChoBkdAcko/oq0+kmgHTV4BaAhHQJSNj3i704B1fZQoaAZHQCSceCCjDbdoB0vcaAhHQJSNyuLaVUx1fZQoaAZHQG05Wwmmce9oB029AWgIR0CUjq49HMEBdX2UKGgGR0ButhaTwDvFaAdNIQFoCEdAlI6+5jH4oXV9lChoBkdAckbvEjxCpmgHTWcBaAhHQJSO3kOqebx1fZQoaAZHQHD7GPYFqztoB01HAWgIR0CUj7CHARChdX2UKGgGR0BvjG+ZgG8maAdNIAFoCEdAlJA4qkM1CXV9lChoBkdAbd4Ja7mMfmgHTToBaAhHQJSRRLteD4B1fZQoaAZHQG1X+V9nbqRoB00bAWgIR0CUkhys0YTCdX2UKGgGR0BwTd8stkFwaAdNXgFoCEdAlJKoMOPNmnV9lChoBkdAcdRYHPeHi2gHTVYBaAhHQJSUdfLLZBd1fZQoaAZHQG98noX9BKNoB01BAWgIR0CUlPf4REncdX2UKGgGR0BulsUXYUWVaAdNXAFoCEdAlJfyP2f03HV9lChoBkdAcZ0FGoaUA2gHTUcBaAhHQJSZoU7CBPN1fZQoaAZHQG4LTYNAkcFoB02BAWgIR0CUm21Muez2dX2UKGgGR0BzAhv99+gEaAdNdwFoCEdAlJupUo8ZDXV9lChoBkdAcQGISDh99mgHTXEBaAhHQJSvVIoVmBh1fZQoaAZHQG3ec14xDb9oB00aAWgIR0CUsI3y7PIGdX2UKGgGR0Bx+sLKFIuoaAdNxAFoCEdAlLCpHRTjvXV9lChoBkdAQN30btJFs2gHS/poCEdAlLGkBsANonV9lChoBkdAcSG0Mw1zhmgHTV4BaAhHQJSx1OoHcDd1fZQoaAZHQEqhxLCemN1oB0vwaAhHQJSx1bcGkep1fZQoaAZHQHJc0fozN2VoB01SAWgIR0CUsoVFx4pudX2UKGgGR0Bu7c2WIGhVaAdNyQFoCEdAlLNM8xKxs3V9lChoBkdAZQlOjZcs2GgHTegDaAhHQJS1MlUp/gB1fZQoaAZHQHLAPIfbKzRoB03bAWgIR0CUtlV9nbqRdX2UKGgGR0BxQDOC5EtvaAdNJAJoCEdAlLeh15jYqXV9lChoBkdAcQV73PAwf2gHTU0BaAhHQJS59cQiA2B1fZQoaAZHQHLbVyvLX+VoB01DAmgIR0CUuq6FM7EHdX2UKGgGR0ByPbiyY5T7aAdNOQFoCEdAlLrmxhUip3V9lChoBkdAcEVBBzFMqWgHTSIBaAhHQJS73fWMCLd1fZQoaAZHQHAPilBQemxoB0v4aAhHQJS95dyDIzZ1fZQoaAZHQHCS6Mzdk8RoB01SAWgIR0CUvh3FkxyodX2UKGgGR0By7UWsRxtIaAdNLwFoCEdAlL5EMspXqHV9lChoBkdAcCnVopQUH2gHTSoBaAhHQJTAqARTS9d1fZQoaAZHQG8eMOPNmlJoB00WAWgIR0CUwTBTn7pFdX2UKGgGR0ByxzDl5nlGaAdNgAFoCEdAlMRBuXNTtXV9lChoBkdAcN4k7OmixmgHTToBaAhHQJTFSJMxoIx1fZQoaAZHQHJdXVsk6cRoB01UAWgIR0CUxV/YraufdX2UKGgGR0BxV7642CNCaAdNrQFoCEdAlMaw0XP7enV9lChoBkdAcj9Nb1RLsmgHTdUBaAhHQJTG1Ex7AtZ1fZQoaAZHQHC4CKekHlhoB01XAWgIR0CUx4Qgs9SudX2UKGgGR0Btjga1kUblaAdNFAFoCEdAlMmrCJoCdXV9lChoBkdAbuTYUWVNYmgHTRgBaAhHQJTJ7IHTqjd1fZQoaAZHQHJB9fw7T2FoB00lAWgIR0CUyiNc4YJmdX2UKGgGR0BxRDabnX/YaAdNjgFoCEdAlMs/BWPtD3V9lChoBkdAceq6zE74jGgHTY8BaAhHQJTL4nRb8m91fZQoaAZHQHIZ5Dqnm7toB00oAWgIR0CUzCSsbNr1dX2UKGgGR0Bx+PljmSyMaAdNlAJoCEdAlM2LkwN9Y3V9lChoBkdAceKZi/fwZ2gHTf4BaAhHQJTP33K0UoN1fZQoaAZHQG+ZzIFNcnpoB006AWgIR0CU0R3trsSkdX2UKGgGR0BxMXy+Yc//aAdNJAFoCEdAlNHMSoOx0XV9lChoBkdAcD8RsMy8BmgHTbQBaAhHQJTSEk6cRUZ1fZQoaAZHQHGR6sU7CBRoB00zAmgIR0CU0x80UGmldX2UKGgGR0Bvtxzo2XLNaAdNiwFoCEdAlNSh+az/qHV9lChoBkdAcaGNqgyuZGgHTQ8BaAhHQJTUyNVBD5V1fZQoaAZHQHKX3fZVXFNoB00fAWgIR0CU1sciGFi8dX2UKGgGR0BvRUYqG1x9aAdNmwFoCEdAlNfghOgxrXV9lChoBkdAbiBXz19ORGgHTUABaAhHQJTZM7xNIsl1fZQoaAZHQHG5MtPHktFoB025AWgIR0CU2/yC4BmxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:973d86daec530c312bbe5dc75638b08fe2bc0074c7b68b5f63183843ec335608
3
- size 147995
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f05eb73de8fdf4fec741f75de156ebd5ed06698abc0fe933c32239bbd9a59cac
3
+ size 148052
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3856af5ab0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3856af5b40>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3856af5bd0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3856af5c60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f3856af5cf0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f3856af5d80>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3856af5e10>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3856af5ea0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f3856af5f30>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3856af5fc0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3856af6050>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3856af60e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f3856a87680>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1700637344573792186,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3lRz7o1pq8avJTOxa8rLl2Gwm+rluJugAAgD8AAIA/7aZKPtJdlDxBLTy7FKWiuR1IJD742Xc6AACAPwAAgD+TekQ+m5rNvOIqFzt0fY65h6kyvnOCg7oAAIA/AACAP0DSMb4Ogo+811sYO2pujDkOT/09ooN5ugAAgD8AAIA/vS2qvmkSlT5pwA899MfIvnfXn72zQ/m7AAAAAAAAAAAAmpM++PqxPOA2LLveaZG5+rcePoWNMjIAAIA/AACAP8bNNL6b4qy8xhGaOkxw+TgcGhU+mrXNuQAAgD8AAIA/gDQ8PhQ/wrzDL2U5qyizt8sDKr6is5m4AACAPwAAgD9twAc+KewIOQNx/Dfh7Gk0L3XiOzEQFLcAAIA/AACAP1oZiT7IKL28Rre9ux7ozDnNpCS+4eegOgAAgD8AAIA/ja4ivijIij+XkIu+G7kTv37y0r2eOEq9AAAAAAAAAADdt9K+BnWsPgZZvzxASqS+W7e0vaLneD0AAAAAAAAAAMCJIL4fvj4+1sh3PUStXL4MSlK8kwH0uwAAAAAAAAAA1g9yvkiarj3vEQO8HqJAvk8zbbzg+zi9AAAAAAAAAADNsqK9XA9sujCdZbpxRYe1j9wcu1LCgzkAAIA/AAAAADN2jrzN/E0/ynmuvDzFA79DMxu6fs6bPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAMmVeKKpGMAWyUTQABjAF0lEdAm9DVyBClanV9lChoBkdAbOup8WsRx2gHS/NoCEdAm9EkE1VHWnV9lChoBkdAbHHHxSYPXmgHS/xoCEdAm9EoG6f8M3V9lChoBkdAY0pugpSaVmgHTegDaAhHQJvSrLQokRl1fZQoaAZHQHA6b2USqVBoB00gAWgIR0Cb0xjgQ6IWdX2UKGgGR0BvzHV5KODKaAdL5GgIR0Cb1HPva11GdX2UKGgGR0BvQUvEjxCqaAdNAAFoCEdAm9S2M4tHx3V9lChoBkdAOM5LIxQBP2gHS91oCEdAm9ZhR/EwWXV9lChoBkdAbrvv863iJmgHTQsBaAhHQJvXMTFl05l1fZQoaAZHQHD2qL4vexhoB00xAWgIR0Cb2R0VafSQdX2UKGgGR0Bt6UC9ytFKaAdNIQFoCEdAm9pD4tYjjnV9lChoBkdAcAjf4yoGZGgHTQEBaAhHQJvavk6tDD11fZQoaAZHQG9qYuK4x1xoB01yAWgIR0Cb27ffGdZrdX2UKGgGR0Bu8ebwz+FUaAdL6mgIR0Cb3FGb1AZ9dX2UKGgGR0BvrSzNUwSKaAdL6WgIR0Cb3E5LytmudX2UKGgGR0Bw5NUHY6GQaAdL22gIR0CcOg35vcagdX2UKGgGR0Bvlp4D9wWFaAdNIgFoCEdAnDrL9ycTanV9lChoBkdAbqPTsIE8rGgHS+FoCEdAnDuJ/smfG3V9lChoBkdAcaPUWVNYbWgHS81oCEdAnDw1dszl93V9lChoBkdAbUBufEn9emgHTQYBaAhHQJw85IVdonN1fZQoaAZHQHBzeFlCkXVoB00fAWgIR0CcQV/oaDPGdX2UKGgGR0BuNUHB1s+FaAdNBQFoCEdAnEGKCYkVvnV9lChoBkdAcEENLDhtL2gHS+toCEdAnEGy04R283V9lChoBkdAbRmvnKW9lGgHTVgBaAhHQJxCRAPd2xJ1fZQoaAZHQHCh6eTV2A5oB00lAWgIR0CcQn99MK1HdX2UKGgGR0BwQAlE7W/baAdL0WgIR0CcQqK9f1HwdX2UKGgGR0Bq2Y2OyVv/aAdNAwFoCEdAnEKwKa5PM3V9lChoBkdAcRhthNM4+GgHS+9oCEdAnELScLBsRHV9lChoBkdAbseSVW0Z32gHTTEBaAhHQJxDx6dDpkh1fZQoaAZHQGvFvVEuxr1oB0vuaAhHQJxEX029+PR1fZQoaAZHQG8mBHTZxrBoB0vpaAhHQJxE6WE9Mbp1fZQoaAZHQGzllyzXz19oB00HAWgIR0CcRqXoTwlTdX2UKGgGR0BwLrAEdNnHaAdL4mgIR0CcSqDFZPl/dX2UKGgGR0BsG/lGPPszaAdL/mgIR0CcSvTUy57PdX2UKGgGR0Bv8pxvNu+AaAdNBwFoCEdAnEtF6NVBEHV9lChoBkdAb4+rYoRZlmgHS+5oCEdAnEumCiAUcnV9lChoBkdAcS/oy9EkSmgHS/doCEdAnExr4i5d4XV9lChoBkdAcMT3/giu+2gHS9hoCEdAnExmc8TzunV9lChoBkdAb/UDBdld1WgHTRcBaAhHQJxNZPbfxc51fZQoaAZHQHDr9s7+1jRoB007AWgIR0CcTpIXCTEBdX2UKGgGR0BgbsHbAUL2aAdN6ANoCEdAnE67Gza9K3V9lChoBkdAbSs3HaN+9mgHS+1oCEdAnE9XOW0JGHV9lChoBkdAcACL876pHmgHTQgBaAhHQJxP3Nu+AVh1fZQoaAZHQGomUqQRwqBoB00QAWgIR0CcU4UExIrfdX2UKGgGR0BhhnSpiqhlaAdN6ANoCEdAnFT7M5fdAXV9lChoBkdAbzOGlANXo2gHS9xoCEdAnFY00zj3mHV9lChoBkdAX61pGnXNDGgHTegDaAhHQJxW2k1uR9x1fZQoaAZHQHFd5f2K2rpoB0vaaAhHQJxXfalDWsl1fZQoaAZHQEbIYgJTl1doB0u7aAhHQJxYFl+Vkc11fZQoaAZHQHCO1Fx4pttoB0v0aAhHQJxYztXxOL11fZQoaAZHQHB5fq5byH5oB00FAWgIR0CcWQBAv+OwdX2UKGgGR0BwnGVAzHjqaAdL+WgIR0CcWdTrE9+xdX2UKGgGR0AZveSB9TgmaAdL+WgIR0CcWtt2cJ+ldX2UKGgGR0BhNoskIHC5aAdN6ANoCEdAnFuy+g13uHV9lChoBkdAbhracI7eVWgHTVwBaAhHQJxcwSzw+dN1fZQoaAZHQG9ziV0Lc9JoB006AWgIR0CcX0ISDh99dX2UKGgGR0BtEQ+lj3EiaAdNAwFoCEdAnGIM6zVtoHV9lChoBkdAb/vhrnDBM2gHS9hoCEdAnGP5RbbDdnV9lChoBkdARDVcMVk+YGgHS8loCEdAnGRxK+SKWXV9lChoBkdAQBO/vfCQ92gHS79oCEdAnGUfH1e0HHV9lChoBkdAbdkuieumrWgHS/toCEdAnGUtjG1hLHV9lChoBkdAchJEX+ERJ2gHTT8BaAhHQJxmtnbqQil1fZQoaAZHQHDwFcUuctpoB00IAWgIR0CcZtlpGnXNdX2UKGgGR0BrsXu9eyAyaAdNXgFoCEdAnGi9Nvfj0nV9lChoBkdAcFz4tHxz72gHTQYBaAhHQJxr4iC8OCp1fZQoaAZHQHCh+vMbFS9oB0vTaAhHQJxtXBEa2nd1fZQoaAZHQG4lSlenhsJoB00CAWgIR0Ccb1MuvlltdX2UKGgGR0BwBCLrHEMtaAdNLgFoCEdAnG/lbiZOSHV9lChoBkdAYpC+/xlQM2gHTegDaAhHQJxwwm4RVZN1fZQoaAZHQHBYWsq8UVVoB00PAWgIR0CcclKP4mCzdX2UKGgGR0BwkZCngpBpaAdL+2gIR0Ccc0S3b212dX2UKGgGR0BxCdpSJj2BaAdNbwFoCEdAnHUNe6ZpjHV9lChoBkdAM7NWU8mrsGgHS8JoCEdAnHYqIi1RcnV9lChoBkdAbmWWTHKfWmgHTScCaAhHQJx2dgPVd5Z1fZQoaAZHQHBotNahYeVoB00zAWgIR0CceWyWzF/AdX2UKGgGR0BwyXX8O09haAdL9mgIR0Cceh76YVqOdX2UKGgGR0BebexwAEMcaAdN6ANoCEdAnHqdtdiUgXV9lChoBkdAcaYBFd9lVmgHS/loCEdAnHrIJZ4fOnV9lChoBkdAbmRitq59VmgHS+1oCEdAnHsO7Dl5nnV9lChoBkdAbwfEKE3842gHS/BoCEdAnH16Oo5xR3V9lChoBkdAb1xjUd7v5WgHTQwBaAhHQJx9xbVz6rN1fZQoaAZHQGAunqmj0thoB03oA2gIR0CcfeTOgQHzdX2UKGgGR0Bvr8t7KJVKaAdNBQFoCEdAnH/n0kGA1HV9lChoBkdAYQpZpSJj2GgHTegDaAhHQJyBLhZQpF11fZQoaAZHQG3P1QAMlTpoB0vXaAhHQJyDYD9wWFh1fZQoaAZHQG58t2TxG2FoB0vYaAhHQJyDrX6InBt1fZQoaAZHQGJUKUu+RHRoB03oA2gIR0CchGM4tHx0dX2UKGgGR0BxFmx1PnB+aAdL+GgIR0CchKIvrWy1dX2UKGgGR0BsLmMfigkDaAdN6wJoCEdAnITTtw71ZnV9lChoBkdAcfBIyTINmWgHTRIBaAhHQJyFL3ai9Ix1fZQoaAZHQHC3Z7PY4AFoB0vaaAhHQJyGPX6InBt1fZQoaAZHQHBdBB/qgRNoB0vtaAhHQJyGhVea8Yh1fZQoaAZHQGR/xGtp22ZoB03oA2gIR0Cch1RQ79ycdX2UKGgGR0BuN6hUR3/xaAdL6GgIR0CciGfF72L6dX2UKGgGR0Bv3c0UGmk4aAdNFAJoCEdAnIr6dxyXD3V9lChoBkdAb++3hn8KomgHS89oCEdAnIt9+5OJtXV9lChoBkdAbtYsMAmzB2gHS+RoCEdAnIuowdsBQ3V9lChoBkdAbx48scyWRmgHS9hoCEdAnIwoi5d4V3V9lChoBkdAcDq1fVqesmgHTRsBaAhHQJyOqajN6gN1fZQoaAZHQGB2mHHmzSloB03oA2gIR0CcjtBN21UmdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 310,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,14 +77,14 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 2048,
81
- "gamma": 0.99,
82
- "gae_lambda": 0.95,
83
- "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efa3b0e30a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efa3b0e3130>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efa3b0e31c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efa3b0e3250>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efa3b0e32e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efa3b0e3370>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efa3b0e3400>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efa3b0e3490>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efa3b0e3520>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efa3b0e35b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efa3b0e3640>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efa3b0e36d0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efa3b287640>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1701158964424817545,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMKpLzDhWq6UUm9O3u20zg4efq60G3uuAAAgD8AAIA/M8OiuingHrp6GsE5u8wbNYZwkjsA39+4AACAPwAAgD8zlaM8SDeququKbDrxL101rGc7Oh6+h7kAAIA/AACAP03Rt75LETU/AmlwvmuMw77c+te+Tk6APAAAAAAAAAAAANhJveGS5jlNltC7D9gmPZp6i7sGs9m7AACAPwAAgD/z6ba9UBKsPq53Nz4aibO+cp82PSb6j70AAAAAAAAAAGYRwjwf/Zy5MKthO6mQRDh6ezy6w+MMugAAgD8AAIA/muWmu4l1uT/m5AO+Y7bDPgFqvjtgXuw8AAAAAAAAAADN5PI7BcH3uxTklT07Yhe+21VYvYZbAb8AAIA/AACAP81MUL1cc1C6JsyKNpXVlTF8aos7nsWotQAAgD8AAIA/M2LwPI+2aLo+/eg60927NaUVZTrKuwi6AACAPwAAgD9m8Fs9uD22PUay5L17F2++CjVSPem6HjwAAAAAAAAAACakrz0beDU/uscSvTJ+or5ntEU70scJvQAAAAAAAAAA5rliPuQzLj/Lq8m9DLmpvi0c6D0jEWe9AAAAAAAAAAAzr+u9BA9BPvBm2z3HBUu+kjNgOrkqIr0AAAAAAAAAAGaYZbzDyRG6uWS/O3afGjhXoq26AEI7NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/2Z9Vmz0KMAWyUTUMBjAF0lEdAlFbESRKYiXV9lChoBkdAcC6+mm+Cb2gHTS0BaAhHQJRYSZof0Vd1fZQoaAZHQHBsyWAwwkBoB02hAWgIR0CUWJ5xR2r5dX2UKGgGR0BuG5o4+8oQaAdNIAFoCEdAlFjwFs54nnV9lChoBkdAb38s052hZmgHTTQBaAhHQJRZY/4ZdfN1fZQoaAZHQHCxF8LKFIxoB01FAWgIR0CUW+B42S+ydX2UKGgGR0BwXueDnNgSaAdNNwFoCEdAlFvrpNbkfnV9lChoBkdAcmHF2V3Ux2gHTY4BaAhHQJRcOlsP8Q91fZQoaAZHQHLLFbNbC79oB01QAWgIR0CUXES1E3KkdX2UKGgGR0Bx+2coYvWZaAdNggFoCEdAlF0tPLxI8XV9lChoBkdAcDEzBhx5s2gHTTgBaAhHQJRfQ1Gb1AZ1fZQoaAZHQHGZr70nPVxoB01kAWgIR0CUX266asp5dX2UKGgGR0BvFZQHiWE9aAdNKgFoCEdAlF/zMzMzM3V9lChoBkdAcAsvtMPBi2gHTSoBaAhHQJRyTiEQGwB1fZQoaAZHQGz0J/wy6+ZoB00ZAWgIR0CUclaOPvKEdX2UKGgGR0BvMEpmVZ9vaAdNIQFoCEdAlHLKNMoMKHV9lChoBkdAcUqI0IkZ8GgHTRYBaAhHQJR0Gbz9S/F1fZQoaAZHQG9chzNliBpoB00UAWgIR0CUdNMYdhiLdX2UKGgGR0Bt6zBGhEjPaAdNLgFoCEdAlHVBG2Cul3V9lChoBkdAcIH00WM0g2gHTUwBaAhHQJR1ojjaPCF1fZQoaAZHQHC5cK1G9YhoB00GAWgIR0CUdtXokiUxdX2UKGgGR0BwQnbDdgv2aAdNCAFoCEdAlHbv5P/JeXV9lChoBkdAcG4C7btZ3mgHTTUBaAhHQJR45+z+m3x1fZQoaAZHQHFCluWKMvRoB00eAWgIR0CUfCbgTAWSdX2UKGgGR0BwqXgJkXk6aAdNZAFoCEdAlH0UpZwGW3V9lChoBkdAbZiUSIxgzGgHTSwBaAhHQJR9UvWYnfF1fZQoaAZHQHDlhk/bCaZoB00QAWgIR0CUfgMspXp4dX2UKGgGR0BxI/3nIQvpaAdNEAFoCEdAlIA/029+PXV9lChoBkdAbdZ/ffoA4mgHTVgBaAhHQJSBY8EFGG51fZQoaAZHQGyobF0gbIdoB01hAWgIR0CUgf7muDBedX2UKGgGR0Bw5EigTRICaAdNlgFoCEdAlIRR6OYIB3V9lChoBkdAcOFL5AQg92gHTSsBaAhHQJSEiOPvKEF1fZQoaAZHQG7mrsjVx0doB01IAWgIR0CUhM5aNdZ8dX2UKGgGR0Bgju2Xsw+MaAdN6ANoCEdAlIUcI/qxDHV9lChoBkdAcfcL0Bfa6GgHTXQBaAhHQJSHYYyfthN1fZQoaAZHQHBz+7L+xW1oB01KAmgIR0CUh/pKSPludX2UKGgGR0BzDIM+eOGTaAdNbgFoCEdAlImMcABDHHV9lChoBkdAcAI/Ue+23WgHTRwBaAhHQJSLXPt2LYR1fZQoaAZHQHAX4xHoX9BoB00KAWgIR0CUjPU+cH4XdX2UKGgGR0BwebILgGbDaAdNPQFoCEdAlIz8XN1QqXV9lChoBkdAcko/oq0+kmgHTV4BaAhHQJSNj3i704B1fZQoaAZHQCSceCCjDbdoB0vcaAhHQJSNyuLaVUx1fZQoaAZHQG05Wwmmce9oB029AWgIR0CUjq49HMEBdX2UKGgGR0ButhaTwDvFaAdNIQFoCEdAlI6+5jH4oXV9lChoBkdAckbvEjxCpmgHTWcBaAhHQJSO3kOqebx1fZQoaAZHQHD7GPYFqztoB01HAWgIR0CUj7CHARChdX2UKGgGR0BvjG+ZgG8maAdNIAFoCEdAlJA4qkM1CXV9lChoBkdAbd4Ja7mMfmgHTToBaAhHQJSRRLteD4B1fZQoaAZHQG1X+V9nbqRoB00bAWgIR0CUkhys0YTCdX2UKGgGR0BwTd8stkFwaAdNXgFoCEdAlJKoMOPNmnV9lChoBkdAcdRYHPeHi2gHTVYBaAhHQJSUdfLLZBd1fZQoaAZHQG98noX9BKNoB01BAWgIR0CUlPf4REncdX2UKGgGR0BulsUXYUWVaAdNXAFoCEdAlJfyP2f03HV9lChoBkdAcZ0FGoaUA2gHTUcBaAhHQJSZoU7CBPN1fZQoaAZHQG4LTYNAkcFoB02BAWgIR0CUm21Muez2dX2UKGgGR0BzAhv99+gEaAdNdwFoCEdAlJupUo8ZDXV9lChoBkdAcQGISDh99mgHTXEBaAhHQJSvVIoVmBh1fZQoaAZHQG3ec14xDb9oB00aAWgIR0CUsI3y7PIGdX2UKGgGR0Bx+sLKFIuoaAdNxAFoCEdAlLCpHRTjvXV9lChoBkdAQN30btJFs2gHS/poCEdAlLGkBsANonV9lChoBkdAcSG0Mw1zhmgHTV4BaAhHQJSx1OoHcDd1fZQoaAZHQEqhxLCemN1oB0vwaAhHQJSx1bcGkep1fZQoaAZHQHJc0fozN2VoB01SAWgIR0CUsoVFx4pudX2UKGgGR0Bu7c2WIGhVaAdNyQFoCEdAlLNM8xKxs3V9lChoBkdAZQlOjZcs2GgHTegDaAhHQJS1MlUp/gB1fZQoaAZHQHLAPIfbKzRoB03bAWgIR0CUtlV9nbqRdX2UKGgGR0BxQDOC5EtvaAdNJAJoCEdAlLeh15jYqXV9lChoBkdAcQV73PAwf2gHTU0BaAhHQJS59cQiA2B1fZQoaAZHQHLbVyvLX+VoB01DAmgIR0CUuq6FM7EHdX2UKGgGR0ByPbiyY5T7aAdNOQFoCEdAlLrmxhUip3V9lChoBkdAcEVBBzFMqWgHTSIBaAhHQJS73fWMCLd1fZQoaAZHQHAPilBQemxoB0v4aAhHQJS95dyDIzZ1fZQoaAZHQHCS6Mzdk8RoB01SAWgIR0CUvh3FkxyodX2UKGgGR0By7UWsRxtIaAdNLwFoCEdAlL5EMspXqHV9lChoBkdAcCnVopQUH2gHTSoBaAhHQJTAqARTS9d1fZQoaAZHQG8eMOPNmlJoB00WAWgIR0CUwTBTn7pFdX2UKGgGR0ByxzDl5nlGaAdNgAFoCEdAlMRBuXNTtXV9lChoBkdAcN4k7OmixmgHTToBaAhHQJTFSJMxoIx1fZQoaAZHQHJdXVsk6cRoB01UAWgIR0CUxV/YraufdX2UKGgGR0BxV7642CNCaAdNrQFoCEdAlMaw0XP7enV9lChoBkdAcj9Nb1RLsmgHTdUBaAhHQJTG1Ex7AtZ1fZQoaAZHQHC4CKekHlhoB01XAWgIR0CUx4Qgs9SudX2UKGgGR0Btjga1kUblaAdNFAFoCEdAlMmrCJoCdXV9lChoBkdAbuTYUWVNYmgHTRgBaAhHQJTJ7IHTqjd1fZQoaAZHQHJB9fw7T2FoB00lAWgIR0CUyiNc4YJmdX2UKGgGR0BxRDabnX/YaAdNjgFoCEdAlMs/BWPtD3V9lChoBkdAceq6zE74jGgHTY8BaAhHQJTL4nRb8m91fZQoaAZHQHIZ5Dqnm7toB00oAWgIR0CUzCSsbNr1dX2UKGgGR0Bx+PljmSyMaAdNlAJoCEdAlM2LkwN9Y3V9lChoBkdAceKZi/fwZ2gHTf4BaAhHQJTP33K0UoN1fZQoaAZHQG+ZzIFNcnpoB006AWgIR0CU0R3trsSkdX2UKGgGR0BxMXy+Yc//aAdNJAFoCEdAlNHMSoOx0XV9lChoBkdAcD8RsMy8BmgHTbQBaAhHQJTSEk6cRUZ1fZQoaAZHQHGR6sU7CBRoB00zAmgIR0CU0x80UGmldX2UKGgGR0Bvtxzo2XLNaAdNiwFoCEdAlNSh+az/qHV9lChoBkdAcaGNqgyuZGgHTQ8BaAhHQJTUyNVBD5V1fZQoaAZHQHKX3fZVXFNoB00fAWgIR0CU1sciGFi8dX2UKGgGR0BvRUYqG1x9aAdNmwFoCEdAlNfghOgxrXV9lChoBkdAbiBXz19ORGgHTUABaAhHQJTZM7xNIsl1fZQoaAZHQHG5MtPHktFoB025AWgIR0CU2/yC4BmxdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6333f8d2958ae14fcd52335dc7bbb515b94323bb806c06d2ee7dc28618da373
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c28c25dc1cd0154acd2f58f1cd2973e465d4e9e384a4cef45c9a942a2aabdf7
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df7731ec65f9534331c95ff29a440d5e15228560407849f85b370e34af5c401b
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c3335e845ddebc8f782b054748dd3c2dbd87ea22a0b9c399d94e8e41ddaecc2
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 187.55167690000002, "std_reward": 90.96717457847771, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-22T07:48:13.714106"}
 
1
+ {"mean_reward": 265.4514804, "std_reward": 14.366598025951307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-28T08:30:59.744137"}