PartnerAI / Model_Active.py
DrChamyoung's picture
Create Model_Active.py
4042589 verified
import math
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
logger = logging.getLogger(__name__)
class RWKV_TimeMix(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
assert config.n_attn % config.n_head == 0
self.layer_id = layer_id
self.ctx_len = config.ctx_len
self.n_head = config.n_head
self.head_size = config.n_attn // config.n_head
self.time_ww = nn.Parameter(
torch.ones(config.n_head, config.ctx_len, config.ctx_len))
self.time_gamma = nn.Parameter(torch.ones(config.ctx_len, 1))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = nn.Linear(config.n_embd, config.n_attn)
self.value = nn.Linear(config.n_embd, config.n_attn)
self.receptance = nn.Linear(config.n_embd, config.n_attn)
self.output = nn.Linear(config.n_attn, config.n_embd)
self.key.scale_init = 0
self.receptance.scale_init = 0
self.output.scale_init = 0
def forward(self, x):
B, T, C = x.size()
x = torch.cat(
[self.time_shift(x[:, :, :C//2]), x[:, :, C//2:]], dim=-1)
k = self.key(x)
v = self.value(x)
r = self.receptance(x)
k = torch.clamp(k, max=30, min=-60)
k = torch.exp(k)
sum_k = torch.cumsum(k, dim=1)
kv = (k * v).view(B, T, self.n_head, self.head_size)
wkv = (torch.einsum('htu,buhc->bthc', self.time_ww[:,:T,:T], kv)
).contiguous().view(B, T, -1)
rwkv = torch.sigmoid(r) * wkv / sum_k
rwkv = self.output(rwkv)
return rwkv * self.time_gamma[:T, :]
class RWKV_ChannelMix(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
hidden_sz = 5 * config.n_ffn // 2
self.key = nn.Linear(config.n_embd, hidden_sz)
self.value = nn.Linear(config.n_embd, hidden_sz)
self.weight = nn.Linear(hidden_sz, config.n_embd)
self.receptance = nn.Linear(config.n_embd, config.n_embd)
self.receptance.scale_init = 0
self.weight.scale_init = 0
def forward(self, x):
B, T, C = x.size()
x = torch.cat(
[self.time_shift(x[:, :, :C//2]), x[:, :, C//2:]], dim=-1)
k = self.key(x)
v = self.value(x)
r = self.receptance(x)
wkv = self.weight(F.mish(k) * v)
rwkv = torch.sigmoid(r) * wkv
return rwkv
class GPTConfig:
def __init__(self, vocab_size, ctx_len, **kwargs):
self.vocab_size = vocab_size
self.ctx_len = ctx_len
for k, v in kwargs.items():
setattr(self, k, v)
class Block(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.config = config
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = RWKV_TimeMix(config, layer_id)
self.mlp = RWKV_ChannelMix(config, layer_id)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
self.blocks = nn.Sequential(*[Block(config, i)
for i in range(config.n_layer)])
self.ln_f = nn.LayerNorm(config.n_embd)
self.time_out = nn.Parameter(torch.ones(1, config.ctx_len, 1))
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.head_q = nn.Linear(config.n_embd, 256)
self.head_k = nn.Linear(config.n_embd, 256)
self.register_buffer("copy_mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len)))
self.ctx_len = config.ctx_len
logger.info("number of parameters: %e", sum(p.numel()
for p in self.parameters()))
def get_ctx_len(self):
return self.ctx_len
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
x = self.tok_emb(idx)
x = self.blocks(x)
x = self.ln_f(x)
q = self.head_q(x)[:,:T,:]
k = self.head_k(x)[:,:T,:]
c = (q @ k.transpose(-2, -1)) * (1.0 / 256)
c = c.masked_fill(self.copy_mask[:T,:T] == 0, 0)
c = c @ F.one_hot(idx, num_classes = self.config.vocab_size).float()
x = x * self.time_out[:, :T, :]
x = self.head(x) + c
loss = None
if targets is not None:
loss = F.cross_entropy(x.view(-1, x.size(-1)), targets.view(-1))
return x, loss