File size: 3,457 Bytes
49a018e
982229e
 
49a018e
 
982229e
 
49a018e
982229e
 
 
8975816
49a018e
259ca64
49a018e
 
982229e
8975816
 
982229e
 
 
 
 
 
8975816
 
 
 
 
 
 
f4c850f
 
 
 
 
 
 
8975816
 
 
 
 
 
49a018e
 
 
 
 
 
 
3154c2a
49a018e
 
 
 
f4c850f
49a018e
f4c850f
49a018e
f4c850f
49a018e
f4c850f
49a018e
4694612
49a018e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language:
- hsb
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- hsb
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-hsb-v3
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: hsb
    metrics:
    - name: Test WER
      type: wer
      value: 0.4763681592039801
    - name: Test CER
      type: cer
      value: 0.11194945177476305
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: hsb
    metrics:
    - name: Test WER
      type: wer
      value: NA
    - name: Test CER
      type: cer
      value: NA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hsb-v3

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6549
- Wer: 0.4827

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

Upper Sorbian (hsb) language not found in speech-recognition-community-v2/dev_data!

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00045
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.8951        | 3.23  | 100  | 3.6396          | 1.0    |
| 3.314         | 6.45  | 200  | 3.2331          | 1.0    |
| 3.1931        | 9.68  | 300  | 3.0947          | 0.9906 |
| 1.7079        | 12.9  | 400  | 0.8865          | 0.8499 |
| 0.6859        | 16.13 | 500  | 0.7994          | 0.7529 |
| 0.4804        | 19.35 | 600  | 0.7783          | 0.7069 |
| 0.3506        | 22.58 | 700  | 0.6904          | 0.6321 |
| 0.2695        | 25.81 | 800  | 0.6519          | 0.5926 |
| 0.222         | 29.03 | 900  | 0.7041          | 0.5720 |
| 0.1828        | 32.26 | 1000 | 0.6608          | 0.5513 |
| 0.1474        | 35.48 | 1100 | 0.7129          | 0.5319 |
| 0.1269        | 38.71 | 1200 | 0.6664          | 0.5056 |
| 0.1077        | 41.94 | 1300 | 0.6712          | 0.4942 |
| 0.0934        | 45.16 | 1400 | 0.6467          | 0.4879 |
| 0.0819        | 48.39 | 1500 | 0.6549          | 0.4827 |


### Framework versions

- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0