--- language: - ko license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - Drunk/aihub_sample model-index: - name: tuning_test_whisper results: [] --- [Visualize in Weights & Biases](https://wandb.ai/drunkjin/huggingface/runs/wa7gys7i) # tuning_test_whisper This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the aihub_sample dataset. It achieves the following results on the evaluation set: - Loss: 1.2301 - Cer: 18.4549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0001 | 500.0 | 1000 | 1.0798 | 18.0258 | | 0.0001 | 1000.0 | 2000 | 1.1747 | 18.4549 | | 0.0 | 1500.0 | 3000 | 1.2109 | 18.4549 | | 0.0 | 2000.0 | 4000 | 1.2301 | 18.4549 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.19.1 - Tokenizers 0.19.1