File size: 2,708 Bytes
d0f76d2
e1cbb77
 
 
d0f76d2
 
 
3351314
 
d0f76d2
 
 
3351314
e1cbb77
 
d0f76d2
 
 
 
 
 
 
2152a71
 
d0f76d2
2152a71
 
 
 
d0f76d2
2152a71
 
 
 
 
 
 
 
d0f76d2
 
0f845fb
d0f76d2
 
 
3351314
d0f76d2
 
 
3351314
d0f76d2
0f845fb
 
 
 
 
 
 
 
d0f76d2
 
 
 
 
 
 
 
 
 
 
 
 
0f845fb
2152a71
 
 
 
d0f76d2
2152a71
d0f76d2
0f845fb
d0f76d2
 
 
 
 
 
3351314
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- en
- it
license: mit
tags:
- generated_from_trainer
- biology
- medical
metrics:
- bleu
- rouge
- meteor
pipeline_tag: translation
base_model: facebook/mbart-large-50
model-index:
- name: mbart-large-50-Biomedical_Dataset
  results: []
---

# mbart-large-50-Biomedical_Dataset

This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50).

It achieves the following results on the evaluation set:
- Training Loss: 1.0165
- Epoch: 1.0
- Step: 2636
- Validation Loss: 0.9425
- Bleu: 38.9893
- Rouge Metrics:
    - Rouge1: 0.6826259612196924
    - Rouge2: 0.473675987811788 
    - RougeL: 0.6586445010303293
    - RougeLsum: 0.6585487473231793
- Meteor: 0.6299677745833094
- Prediction lengths: 24.362727392855568
 
## Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Biomedical%20-%20Translation%20Project.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/paolo-ruggirello/biomedical-dataset

### Histogram of English Input Word Counts

![English Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Images/Histogram%20of%20English%20Lengths.png)

### Histogram of Italian Input Word Counts

![Italian Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Images/Histogram%20of%20Italian%20Inputs.png)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results*

| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | Prediction Lengths |
| :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: |
| 1.0165 | 1.0 | 2636 | 0.9425 | 38.9893 | 0.6826 | 0.4737 | 0.6586 | 0.6585 | 0.6270 | 24.3627 |

Footnotes:

*: All results in this table are rounded to the nearest ten-thousandths of the decimal.

### Framework versions

- Transformers 4.26.1
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3