File size: 2,708 Bytes
d0f76d2 e1cbb77 d0f76d2 3351314 d0f76d2 3351314 e1cbb77 d0f76d2 2152a71 d0f76d2 2152a71 d0f76d2 2152a71 d0f76d2 0f845fb d0f76d2 3351314 d0f76d2 3351314 d0f76d2 0f845fb d0f76d2 0f845fb 2152a71 d0f76d2 2152a71 d0f76d2 0f845fb d0f76d2 3351314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- en
- it
license: mit
tags:
- generated_from_trainer
- biology
- medical
metrics:
- bleu
- rouge
- meteor
pipeline_tag: translation
base_model: facebook/mbart-large-50
model-index:
- name: mbart-large-50-Biomedical_Dataset
results: []
---
# mbart-large-50-Biomedical_Dataset
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50).
It achieves the following results on the evaluation set:
- Training Loss: 1.0165
- Epoch: 1.0
- Step: 2636
- Validation Loss: 0.9425
- Bleu: 38.9893
- Rouge Metrics:
- Rouge1: 0.6826259612196924
- Rouge2: 0.473675987811788
- RougeL: 0.6586445010303293
- RougeLsum: 0.6585487473231793
- Meteor: 0.6299677745833094
- Prediction lengths: 24.362727392855568
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Biomedical%20-%20Translation%20Project.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://huggingface.co/datasets/paolo-ruggirello/biomedical-dataset
### Histogram of English Input Word Counts
![English Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Images/Histogram%20of%20English%20Lengths.png)
### Histogram of Italian Input Word Counts
![Italian Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Images/Histogram%20of%20Italian%20Inputs.png)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results*
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | Prediction Lengths |
| :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: |
| 1.0165 | 1.0 | 2636 | 0.9425 | 38.9893 | 0.6826 | 0.4737 | 0.6586 | 0.6585 | 0.6270 | 24.3627 |
Footnotes:
*: All results in this table are rounded to the nearest ten-thousandths of the decimal.
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3 |