--- license: mit tags: - generated_from_trainer metrics: - bleu - rouge model-index: - name: mbart-large-50-English_French_Translation_v2 results: [] language: - en - fr --- # mbart-large-50-English_French_Translation_v2 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3902 - Bleu: 35.1914 - Rouge - Rouge1: 0.641952430267112 - Rouge2: 0.4572909036472911 - RougeL: 0.607001331434416 - RougeLsum: 0.6068905123656807 - Meteor: 0.5916610499445853 ## Model description This model translates French input text samples to English. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/NLP%20Translation%20Project-EN:FR.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/hgultekin/paralel-translation-corpus-in-22-languages **English Input Text Lengths (in Words)** ![English Input Text Lengths (in Words)](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/NLP%20Translation%20Project-EN%20to%20FR/Images/English%20Context%20Length.png) **French Input Text Lengths (in Words)** ![French Input Text Lengths (in Words)](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/NLP%20Translation%20Project-EN%20to%20FR/Images/French%20Context%20Length.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | |:-------------:|:-----:|:----:|:---------:|:-------:|:------:|:--------:|:------:|:---------:|:-----:| | 1.1677 | 1.0 | 750 | 0.3902 | 35.1914 | 0.6419 | 0.4573 | 0.6070 | 0.6069 | 0.5917 | * All values in the chart above are rounded to the nearest ten-thousandths. ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.12.1