DunnBC22 commited on
Commit
d91ed56
1 Parent(s): 5fb8a26

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -11
README.md CHANGED
@@ -19,19 +19,23 @@ pipeline_tag: audio-classification
19
 
20
  # wav2vec2-base-Speech_Emotion_Recognition
21
 
22
- This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
 
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.7264
25
  - Accuracy: 0.7539
26
- - Weighted f1: 0.7514
27
- - Micro f1: 0.7539
28
- - Macro f1: 0.7529
29
- - Weighted recall: 0.7539
30
- - Micro recall: 0.7539
31
- - Macro recall: 0.7577
32
- - Weighted precision: 0.7565
33
- - Micro precision: 0.7539
34
- - Macro precision: 0.7558
 
 
 
35
 
36
  ## Model description
37
 
@@ -65,7 +69,7 @@ The following hyperparameters were used during training:
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
70
  | 1.5581 | 0.98 | 43 | 1.4046 | 0.4653 | 0.4080 | 0.4653 | 0.4174 | 0.4653 | 0.4653 | 0.4793 | 0.5008 | 0.4653 | 0.4974 |
71
  | 1.5581 | 1.98 | 86 | 1.1566 | 0.5997 | 0.5836 | 0.5997 | 0.5871 | 0.5997 | 0.5997 | 0.6093 | 0.6248 | 0.5997 | 0.6209 |
 
19
 
20
  # wav2vec2-base-Speech_Emotion_Recognition
21
 
22
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base).
23
+
24
  It achieves the following results on the evaluation set:
25
  - Loss: 0.7264
26
  - Accuracy: 0.7539
27
+ - F1
28
+ - Weighted: 0.7514
29
+ - Micro: 0.7539
30
+ - Macro: 0.7529
31
+ - Recall
32
+ - Weighted: 0.7539
33
+ - Micro: 0.7539
34
+ - Macro: 0.7577
35
+ - Precision
36
+ - Weighted: 0.7565
37
+ - Micro: 0.7539
38
+ - Macro: 0.7558
39
 
40
  ## Model description
41
 
 
69
 
70
  ### Training results
71
 
72
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
73
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
74
  | 1.5581 | 0.98 | 43 | 1.4046 | 0.4653 | 0.4080 | 0.4653 | 0.4174 | 0.4653 | 0.4653 | 0.4793 | 0.5008 | 0.4653 | 0.4974 |
75
  | 1.5581 | 1.98 | 86 | 1.1566 | 0.5997 | 0.5836 | 0.5997 | 0.5871 | 0.5997 | 0.5997 | 0.6093 | 0.6248 | 0.5997 | 0.6209 |