update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- audiofolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-base-Speech_Emotion_Recognition
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-base-Speech_Emotion_Recognition
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7264
|
22 |
+
- Accuracy: 0.7539
|
23 |
+
- Weighted f1: 0.7514
|
24 |
+
- Micro f1: 0.7539
|
25 |
+
- Macro f1: 0.7529
|
26 |
+
- Weighted recall: 0.7539
|
27 |
+
- Micro recall: 0.7539
|
28 |
+
- Macro recall: 0.7577
|
29 |
+
- Weighted precision: 0.7565
|
30 |
+
- Micro precision: 0.7539
|
31 |
+
- Macro precision: 0.7558
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training and evaluation data
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training procedure
|
46 |
+
|
47 |
+
### Training hyperparameters
|
48 |
+
|
49 |
+
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 3e-05
|
51 |
+
- train_batch_size: 32
|
52 |
+
- eval_batch_size: 32
|
53 |
+
- seed: 42
|
54 |
+
- gradient_accumulation_steps: 4
|
55 |
+
- total_train_batch_size: 128
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- lr_scheduler_warmup_ratio: 0.1
|
59 |
+
- num_epochs: 10
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
65 |
+
| 1.5581 | 0.98 | 43 | 1.4046 | 0.4653 | 0.4080 | 0.4653 | 0.4174 | 0.4653 | 0.4653 | 0.4793 | 0.5008 | 0.4653 | 0.4974 |
|
66 |
+
| 1.5581 | 1.98 | 86 | 1.1566 | 0.5997 | 0.5836 | 0.5997 | 0.5871 | 0.5997 | 0.5997 | 0.6093 | 0.6248 | 0.5997 | 0.6209 |
|
67 |
+
| 1.5581 | 2.98 | 129 | 0.9733 | 0.6883 | 0.6845 | 0.6883 | 0.6860 | 0.6883 | 0.6883 | 0.6923 | 0.7012 | 0.6883 | 0.7009 |
|
68 |
+
| 1.5581 | 3.98 | 172 | 0.8313 | 0.7399 | 0.7392 | 0.7399 | 0.7409 | 0.7399 | 0.7399 | 0.7417 | 0.7415 | 0.7399 | 0.7432 |
|
69 |
+
| 1.5581 | 4.98 | 215 | 0.8708 | 0.7028 | 0.6963 | 0.7028 | 0.6970 | 0.7028 | 0.7028 | 0.7081 | 0.7148 | 0.7028 | 0.7114 |
|
70 |
+
| 1.5581 | 5.98 | 258 | 0.7969 | 0.7297 | 0.7267 | 0.7297 | 0.7277 | 0.7297 | 0.7297 | 0.7333 | 0.7393 | 0.7297 | 0.7382 |
|
71 |
+
| 1.5581 | 6.98 | 301 | 0.7349 | 0.7603 | 0.7613 | 0.7603 | 0.7631 | 0.7603 | 0.7603 | 0.7635 | 0.7699 | 0.7603 | 0.7702 |
|
72 |
+
| 1.5581 | 7.98 | 344 | 0.7714 | 0.7469 | 0.7444 | 0.7469 | 0.7456 | 0.7469 | 0.7469 | 0.7485 | 0.7554 | 0.7469 | 0.7563 |
|
73 |
+
| 1.5581 | 8.98 | 387 | 0.7183 | 0.7630 | 0.7615 | 0.7630 | 0.7631 | 0.7630 | 0.7630 | 0.7652 | 0.7626 | 0.7630 | 0.7637 |
|
74 |
+
| 1.5581 | 9.98 | 430 | 0.7264 | 0.7539 | 0.7514 | 0.7539 | 0.7529 | 0.7539 | 0.7539 | 0.7577 | 0.7565 | 0.7539 | 0.7558 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.26.1
|
80 |
+
- Pytorch 2.0.0+cu118
|
81 |
+
- Datasets 2.11.0
|
82 |
+
- Tokenizers 0.13.3
|