upload model
Browse files
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
```python
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn import CrossEntropyLoss, KLDivLoss
|
10 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
11 |
+
from transformers import BertModel, BertPreTrainedModel
|
12 |
+
|
13 |
+
class BertForHighlightPrediction(BertPreTrainedModel):
|
14 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
15 |
+
|
16 |
+
def __init__(self, config, **model_kwargs):
|
17 |
+
super().__init__(config)
|
18 |
+
# self.model_args = model_kargs["model_args"]
|
19 |
+
self.num_labels = config.num_labels
|
20 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
21 |
+
classifier_dropout = (
|
22 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
23 |
+
)
|
24 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
25 |
+
self.tokens_clf = nn.Linear(config.hidden_size, config.num_labels)
|
26 |
+
|
27 |
+
self.tau = model_kwargs.pop('tau', 1)
|
28 |
+
self.gamma = model_kwargs.pop('gamma', 1)
|
29 |
+
self.soft_labeling = model_kwargs.pop('soft_labeling', False)
|
30 |
+
|
31 |
+
self.init_weights()
|
32 |
+
self.softmax = nn.Softmax(dim=-1)
|
33 |
+
|
34 |
+
def forward(self,
|
35 |
+
input_ids=None,
|
36 |
+
probs=None, # soft-labeling
|
37 |
+
attention_mask=None,
|
38 |
+
token_type_ids=None,
|
39 |
+
position_ids=None,
|
40 |
+
head_mask=None,
|
41 |
+
inputs_embeds=None,
|
42 |
+
labels=None,
|
43 |
+
output_attentions=None,
|
44 |
+
output_hidden_states=None,
|
45 |
+
return_dict=None,):
|
46 |
+
|
47 |
+
outputs = self.bert(
|
48 |
+
input_ids,
|
49 |
+
attention_mask=attention_mask,
|
50 |
+
token_type_ids=token_type_ids,
|
51 |
+
position_ids=position_ids,
|
52 |
+
head_mask=head_mask,
|
53 |
+
inputs_embeds=inputs_embeds,
|
54 |
+
output_attentions=output_attentions,
|
55 |
+
output_hidden_states=output_hidden_states,
|
56 |
+
return_dict=return_dict,
|
57 |
+
)
|
58 |
+
|
59 |
+
tokens_output = outputs[0]
|
60 |
+
highlight_logits = self.tokens_clf(self.dropout(tokens_output))
|
61 |
+
|
62 |
+
loss = None
|
63 |
+
if labels is not None:
|
64 |
+
loss_fct = CrossEntropyLoss()
|
65 |
+
active_loss = attention_mask.view(-1) == 1
|
66 |
+
active_logits = highlight_logits.view(-1, self.num_labels)
|
67 |
+
active_labels = torch.where(
|
68 |
+
active_loss,
|
69 |
+
labels.view(-1),
|
70 |
+
torch.tensor(loss_fct.ignore_index).type_as(labels)
|
71 |
+
)
|
72 |
+
loss_ce = loss_fct(active_logits, active_labels)
|
73 |
+
|
74 |
+
loss_kl = 0
|
75 |
+
if self.soft_labeling:
|
76 |
+
loss_fct = KLDivLoss(reduction='sum')
|
77 |
+
active_mask = (attention_mask * token_type_ids).view(-1, 1) # BL 1
|
78 |
+
n_active = (active_mask == 1).sum()
|
79 |
+
active_mask = active_mask.repeat(1, 2) # BL 2
|
80 |
+
input_logp = F.log_softmax(active_logits / self.tau, -1) # BL 2
|
81 |
+
target_p = torch.cat(( (1-probs).view(-1, 1), probs.view(-1, 1)), -1) # BL 2
|
82 |
+
|
83 |
+
loss_kl = loss_fct(input_logp, target_p * active_mask) / n_active
|
84 |
+
|
85 |
+
loss = self.gamma * loss_ce + (1-self.gamma) * loss_kl
|
86 |
+
|
87 |
+
# print("Loss:\n")
|
88 |
+
# print(loss)
|
89 |
+
# print(loss_kl)
|
90 |
+
# print(loss_ce)
|
91 |
+
|
92 |
+
return TokenClassifierOutput(
|
93 |
+
loss=loss,
|
94 |
+
logits=highlight_logits,
|
95 |
+
hidden_states=outputs.hidden_states,
|
96 |
+
attentions=outputs.attentions,
|
97 |
+
)
|
98 |
+
@torch.no_grad()
|
99 |
+
def inference(self, outputs):
|
100 |
+
|
101 |
+
with torch.no_grad():
|
102 |
+
outputs = self.forward(**batch_inputs)
|
103 |
+
probabilities = self.softmax(self.tokens_clf(outputs.hidden_states[-1]))
|
104 |
+
predictions = torch.argmax(probabilities, dim=-1)
|
105 |
+
|
106 |
+
# active filtering
|
107 |
+
active_tokens = batch_inputs['attention_mask'] == 1
|
108 |
+
active_predictions = torch.where(
|
109 |
+
active_tokens,
|
110 |
+
predictions,
|
111 |
+
torch.tensor(-1).type_as(predictions)
|
112 |
+
)
|
113 |
+
|
114 |
+
outputs = {
|
115 |
+
"probabilities": probabilities[:, :, 1].detach(), # shape: (batch, length)
|
116 |
+
"active_predictions": predictions.detach(),
|
117 |
+
"active_tokens": active_tokens,
|
118 |
+
}
|
119 |
+
|
120 |
+
return outputs
|
121 |
+
```
|