import argparse import json import os import re import zipfile import torch #################################################################################################### # This file is a modification of the original # https://github.com/huggingface/transformers/blob/main/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py def recursive_print(name, val, spaces=0): # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def convert_megatron_checkpoint(input_state_dict, head_model=True): # The converted output model. output_state_dict = {} # The model. model = input_state_dict["model"] # The language model. lm = model["language_model"] # The embeddings. embeddings = lm["embedding"] # The word embeddings. word_embeddings = embeddings["word_embeddings"]["weight"] # Store the word embeddings. output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings # The position embeddings. pos_embeddings = embeddings["position_embeddings"]["weight"] # Trained for 512 x 1024. assert pos_embeddings.size(0) == 512 and pos_embeddings.size(1) == 1024 # Store the position embeddings. output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings # The token-type embeddings. tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"] # Store the position embeddings. output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings # The transformer. transformer = lm["transformer"] # The regex to extract layer names. layer_re = re.compile("layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The simple map of names for "automated" rules. megatron_to_transformers = { "attention.dense": ".attention.output.dense.", "mlp.dense_h_to_4h": ".intermediate.dense.", "mlp.dense_4h_to_h": ".output.dense.", } # Keep track of the attention/query/value tensor. attention_qkv_weight = None # Extract the layers. for key, val in transformer.items(): # Match the name. m = layer_re.match(key) # Stop if that's not a layer if m is None: break # The index of the layer. layer_idx = int(m.group(1)) # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) # The name of the layer. layer_name = f"bert.encoder.layer.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): ln_name = "attention.ln" if op_name.startswith("input") else "ln" output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val # Transpose the QKV matrix. elif op_name == "attention.query_key_value" and weight_or_bias == "weight": # Make sure the QKV pointer is nil. assert attention_qkv_weight is None, "" # Store the tensor as we need the bias as well to interleave QKV and biases. attention_qkv_weight = val # Transpose the bias. elif op_name == "attention.query_key_value" and weight_or_bias == "bias": # Make sure we read the weight tensor. assert attention_qkv_weight is not None, "" # Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved. q = attention_qkv_weight[0 * 1024 : 1 * 1024, :] k = attention_qkv_weight[1 * 1024 : 2 * 1024, :] v = attention_qkv_weight[2 * 1024 : 3 * 1024, :] # Split the bias. q_bias = val[0 * 1024 : 1 * 1024] k_bias = val[1 * 1024 : 2 * 1024] v_bias = val[2 * 1024 : 3 * 1024] # Store. output_state_dict[f"{layer_name}.attention.self.query.weight"] = q output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias output_state_dict[f"{layer_name}.attention.self.key.weight"] = k output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias output_state_dict[f"{layer_name}.attention.self.value.weight"] = v output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias # Clear the stored tensor. attention_qkv_weight = None # Copy weights and biases as is. elif weight_or_bias in ["weight", "bias"]: out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + weight_or_bias] = val # The final layernorm. output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"] output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"] # The config. output_config = { "vocab_size": word_embeddings.size(0), "hidden_size": 1024, "num_hidden_layers": 24, "num_attention_heads": 16, "hidden_act": "gelu_new", "intermediate_size": 4096, "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.2, "layer_norm_eps": 1e-12, "position_embedding_type": "absolute", "use_cache": False, "model_type": "megatron-bert", } if head_model: # The pooler. pooler = lm["pooler"] # Store the matrix and the bias. output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"] output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"] # The LM head from Megatron (for RACE). lm_head = model["lm_head"] # The transform matrix. output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"] output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"] # The transform LN. output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"] output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"] # For the decoder, we replicate the weights. output_state_dict["cls.predictions.decoder.weight"] = word_embeddings output_state_dict["cls.predictions.bias"] = lm_head["bias"] # The classifier from Megatron (for MLNI). binary_head = model["binary_head"] # Store the classifier. output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"] output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"] # It should be done! return output_state_dict, output_config