File size: 4,589 Bytes
5ddf8ac
 
4824cb8
5ddf8ac
 
4824cb8
4f1206b
5ddf8ac
4824cb8
 
 
 
 
 
 
 
 
 
5ddf8ac
 
 
 
4824cb8
5ddf8ac
e40181a
 
 
 
 
 
 
5ddf8ac
 
 
4824cb8
4f1206b
5ddf8ac
 
4824cb8
 
8f607e1
4824cb8
 
 
 
 
 
 
 
 
 
 
 
 
5ddf8ac
 
 
4824cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddf8ac
 
 
463b40d
b460c0e
cb4b004
 
 
 
 
 
 
b460c0e
4824cb8
 
b460c0e
 
2f1e7cc
5ddf8ac
4824cb8
5ddf8ac
4824cb8
5ddf8ac
 
 
 
 
4824cb8
5ddf8ac
4824cb8
5ddf8ac
 
 
4824cb8
 
 
 
5ddf8ac
 
4824cb8
 
 
 
 
 
 
 
5ddf8ac
 
4824cb8
 
 
 
5ddf8ac
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
tags:
    - text-generation
license: cc-by-nc-sa-4.0
language:
    - ko
base_model: LDCC/LDCC-SOLAR-10.7B
pipeline_tag: text-generation
datasets:
    - Edentns/data_go_kr-PublicDoc
    - Edentns/aihub-TL_unanswerable_output
    - Edentns/aihub-TL_span_extraction_how_output
    - Edentns/aihub-TL_multiple_choice_output
    - Edentns/aihub-TL_text_entailment_output
    - jojo0217/korean_rlhf_dataset
    - kyujinpy/KOR-OpenOrca-Platypus-v3
    - beomi/KoAlpaca-v1.1a
    - HumanF-MarkrAI/WIKI_QA_Near_dedup
---

# **DataVortexS-10.7B-v0.4**

<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">

## Our Team

| Research & Engineering | Product Management |
| :--------------------: | :----------------: |
|     Kwangseok Yang     |   Seunghyun Choi   |
|     Jeongwon Choi      |    Hyoseok Choi    |

## **Model Details**

### **Base Model**

[LDCC/LDCC-SOLAR-10.7B](https://huggingface.co/LDCC/LDCC-SOLAR-10.7B)

### **Trained On**

-   **OS**: Ubuntu 20.04
-   **GPU**: H100 80GB 2ea
-   **transformers**: v4.36.2

### **Dataset**

-   Edentns/data_go_kr-PublicDoc - private
-   Edentns/aihub-TL_unanswerable_output - private
-   Edentns/aihub-TL_span_extraction_how_output - private
-   Edentns/aihub-TL_multiple_choice_output - private
-   Edentns/aihub-TL_text_entailment_output - private
-   [jojo0217/korean_rlhf_dataset](https://huggingface.co/datasets/jojo0217/korean_rlhf_dataset)
-   [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3)
-   [beomi/KoAlpaca-v1.1a](https://huggingface.co/datasets/beomi/KoAlpaca-v1.1a)
-   [HumanF-MarkrAI/WIKI_QA_Near_dedup](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup)

### **Instruction format**

It follows **Alpaca** format.

E.g.

```python
text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### Instruction:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Response:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### Instruction:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""
```

## **Model Benchmark**

### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**

| Task             |      0-shot |         5-shot |        10-shot |      50-shot |
| :--------------- | ----------: | -------------: | -------------: | -----------: |
| kobest_boolq     |    0.389066 |       0.912924 |       0.912808 |     0.906428 |
| kobest_copa      |    0.744865 |       0.747742 |       0.768856 |     0.785896 |
| kobest_hellaswag |    0.455793 |       0.443909 |       0.465783 |     0.472771 |
| kobest_sentineg  |    0.584156 |       0.947082 |       0.962216 |     0.954657 |
| **Average**      | **0.54347** | **0.76291425** | **0.77741575** | **0.779938** |

### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)**

| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
|   54.15 |   49.4 |         59.7 |   54.63 |          47.5 |            59.5 |

## **Implementation Code**

This model contains the chat_template instruction format.  
You can use the code below.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.4")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.4")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## **License**

The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.

<div align="center">
    <a href="https://edentns.com/">
        <img src="./Logo.png" alt="Logo" style="height: 3em;">
    </a>
</div>