--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-NER-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9327342290239345 - name: Recall type: recall value: 0.9405167773192177 - name: F1 type: f1 value: 0.9366093366093367 - name: Accuracy type: accuracy value: 0.9850621063165951 --- # bert-base-NER-finetuned-ner This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0723 - Precision: 0.9327 - Recall: 0.9405 - F1: 0.9366 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.0754 | 0.9225 | 0.9296 | 0.9260 | 0.9831 | | No log | 2.0 | 440 | 0.0688 | 0.9319 | 0.9407 | 0.9363 | 0.9849 | | 0.0717 | 3.0 | 660 | 0.0723 | 0.9327 | 0.9405 | 0.9366 | 0.9851 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0 - Datasets 2.7.1 - Tokenizers 0.11.0