File size: 3,046 Bytes
b8f5166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: bemused-trout-607
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bemused-trout-607
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1783
- Hamming Loss: 0.0643
- Zero One Loss: 0.4113
- Jaccard Score: 0.3643
- Hamming Loss Optimised: 0.0615
- Hamming Loss Threshold: 0.7239
- Zero One Loss Optimised: 0.4038
- Zero One Loss Threshold: 0.4731
- Jaccard Score Optimised: 0.3281
- Jaccard Score Threshold: 0.2446
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.0943791435964314e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| 0.2941 | 1.0 | 400 | 0.2355 | 0.0934 | 0.7987 | 0.7963 | 0.0929 | 0.6046 | 0.6738 | 0.2934 | 0.5524 | 0.2658 |
| 0.2247 | 2.0 | 800 | 0.2132 | 0.0914 | 0.6188 | 0.5905 | 0.0906 | 0.6229 | 0.6262 | 0.3893 | 0.4890 | 0.2889 |
| 0.187 | 3.0 | 1200 | 0.1854 | 0.066 | 0.4712 | 0.4224 | 0.0653 | 0.7034 | 0.4325 | 0.4451 | 0.3701 | 0.4026 |
| 0.1495 | 4.0 | 1600 | 0.1783 | 0.0643 | 0.4113 | 0.3643 | 0.0615 | 0.7239 | 0.4038 | 0.4731 | 0.3281 | 0.2446 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|