--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: bemused-trout-607 results: [] --- # bemused-trout-607 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1783 - Hamming Loss: 0.0643 - Zero One Loss: 0.4113 - Jaccard Score: 0.3643 - Hamming Loss Optimised: 0.0615 - Hamming Loss Threshold: 0.7239 - Zero One Loss Optimised: 0.4038 - Zero One Loss Threshold: 0.4731 - Jaccard Score Optimised: 0.3281 - Jaccard Score Threshold: 0.2446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0943791435964314e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.2941 | 1.0 | 400 | 0.2355 | 0.0934 | 0.7987 | 0.7963 | 0.0929 | 0.6046 | 0.6738 | 0.2934 | 0.5524 | 0.2658 | | 0.2247 | 2.0 | 800 | 0.2132 | 0.0914 | 0.6188 | 0.5905 | 0.0906 | 0.6229 | 0.6262 | 0.3893 | 0.4890 | 0.2889 | | 0.187 | 3.0 | 1200 | 0.1854 | 0.066 | 0.4712 | 0.4224 | 0.0653 | 0.7034 | 0.4325 | 0.4451 | 0.3701 | 0.4026 | | 0.1495 | 4.0 | 1600 | 0.1783 | 0.0643 | 0.4113 | 0.3643 | 0.0615 | 0.7239 | 0.4038 | 0.4731 | 0.3281 | 0.2446 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3