File size: 2,917 Bytes
030cfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: marvelous-cat-327
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# marvelous-cat-327

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1549
- Hamming Loss: 0.0581
- Zero One Loss: 0.4087
- Jaccard Score: 0.3522
- Hamming Loss Optimised: 0.0566
- Hamming Loss Threshold: 0.6291
- Zero One Loss Optimised: 0.3875
- Zero One Loss Threshold: 0.4442
- Jaccard Score Optimised: 0.3185
- Jaccard Score Threshold: 0.2459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.981063961904907e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 2024

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.913862773872536,0.981775961733248) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 100  | 0.1647          | 0.0635       | 0.485         | 0.4364        | 0.062                  | 0.5617                 | 0.4675                  | 0.4177                  | 0.3514                  | 0.2886                  |
| No log        | 2.0   | 200  | 0.1537          | 0.0591       | 0.405         | 0.3445        | 0.0587                 | 0.5717                 | 0.4025                  | 0.4646                  | 0.3214                  | 0.4353                  |
| No log        | 3.0   | 300  | 0.1549          | 0.0581       | 0.4087        | 0.3522        | 0.0566                 | 0.6291                 | 0.3875                  | 0.4442                  | 0.3185                  | 0.2459                  |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0