--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: rare-mink-344 results: [] --- # rare-mink-344 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1684 - Hamming Loss: 0.0622 - Zero One Loss: 0.4775 - Jaccard Score: 0.4349 - Hamming Loss Optimised: 0.0619 - Hamming Loss Threshold: 0.5161 - Zero One Loss Optimised: 0.4525 - Zero One Loss Threshold: 0.3657 - Jaccard Score Optimised: 0.3635 - Jaccard Score Threshold: 0.2643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.8001716530301675e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8775527409811034,0.8351994879199208) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1861 | 0.0686 | 0.5262 | 0.4890 | 0.0679 | 0.4904 | 0.4975 | 0.3930 | 0.4236 | 0.3044 | | No log | 2.0 | 200 | 0.1684 | 0.0622 | 0.4775 | 0.4349 | 0.0619 | 0.5161 | 0.4525 | 0.3657 | 0.3635 | 0.2643 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0