--- library_name: transformers license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer model-index: - name: selective-skunk-437 results: [] --- # selective-skunk-437 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3511 - Hamming Loss: 0.1123 - Zero One Loss: 1.0 - Jaccard Score: 1.0 - Hamming Loss Optimised: 0.1123 - Hamming Loss Threshold: 0.9000 - Zero One Loss Optimised: 1.0 - Zero One Loss Threshold: 0.9000 - Jaccard Score Optimised: 1.0 - Jaccard Score Threshold: 0.9000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0943791435964314e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 2024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.4991 | 1.0 | 50 | 0.3808 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.3696 | 2.0 | 100 | 0.3511 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3