File size: 3,120 Bytes
4835159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

library_name: peft
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: whimsical-crane-88
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whimsical-crane-88

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3017
- Hamming Loss: 0.1008
- Zero One Loss: 0.8638
- Jaccard Score: 0.8619
- Hamming Loss Optimised: 0.1005
- Hamming Loss Threshold: 0.4669
- Zero One Loss Optimised: 0.7662
- Zero One Loss Threshold: 0.2371
- Jaccard Score Optimised: 0.7019
- Jaccard Score Threshold: 0.1424

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6029632367762424e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8378996868939299,0.8949526992950398) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 100  | 0.3418          | 0.1123       | 0.99          | 0.99          | 0.1121                 | 0.5223                 | 0.8287                  | 0.2215                  | 0.7749                  | 0.1699                  |
| No log        | 2.0   | 200  | 0.3238          | 0.1098       | 0.965         | 0.9644        | 0.1069                 | 0.4149                 | 0.7863                  | 0.2162                  | 0.7400                  | 0.1647                  |
| No log        | 3.0   | 300  | 0.3082          | 0.1021       | 0.8775        | 0.8762        | 0.1014                 | 0.4735                 | 0.7688                  | 0.2369                  | 0.7141                  | 0.1721                  |
| No log        | 4.0   | 400  | 0.3017          | 0.1008       | 0.8638        | 0.8619        | 0.1005                 | 0.4669                 | 0.7662                  | 0.2371                  | 0.7019                  | 0.1424                  |


### Framework versions

- PEFT 0.13.2
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0