File size: 2,307 Bytes
570b648 35109a3 79e764c 005c0ed e6bd59e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
license: mit
metrics:
- recall
pipeline_tag: video-classification
tags:
- FER
- Image Classification
library_name: PyTorch
---
# Static and dynamic facial emotion recognition using the Emo-AffectNet model
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet)](https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions)
This is Emo-AffectNet model for facial emotion recognition by videos / images.
To see the emotion detected by webcam, you should run ``rub_webcam``. Webcam result:
<p align="center">
<img width="50%" src="https://github.com/ElenaRyumina/EMO-AffectNetModel/blob/main/gif/result_2.gif?raw=true" alt="result"/>
</p>
For more information see [GitHub](https://github.com/ElenaRyumina/EMO-AffectNetModel).
### Citation
If you are using EMO-AffectNet model in your research, please consider to cite research [paper](https://www.sciencedirect.com/science/article/pii/S0925231222012656). Here is an example of BibTeX entry:
<div class="highlight highlight-text-bibtex notranslate position-relative overflow-auto" dir="auto"><pre><span class="pl-k">@article</span>{<span class="pl-en">RYUMINA2022</span>,
<span class="pl-s">title</span> = <span class="pl-s"><span class="pl-pds">{</span>In Search of a Robust Facial Expressions Recognition Model: A Large-Scale Visual Cross-Corpus Study<span class="pl-pds">}</span></span>,
<span class="pl-s">author</span> = <span class="pl-s"><span class="pl-pds">{</span>Elena Ryumina and Denis Dresvyanskiy and Alexey Karpov<span class="pl-pds">}</span></span>,
<span class="pl-s">journal</span> = <span class="pl-s"><span class="pl-pds">{</span>Neurocomputing<span class="pl-pds">}</span></span>,
<span class="pl-s">year</span> = <span class="pl-s"><span class="pl-pds">{</span>2022<span class="pl-pds">}</span></span>,
<span class="pl-s">doi</span> = <span class="pl-s"><span class="pl-pds">{</span>10.1016/j.neucom.2022.10.013<span class="pl-pds">}</span></span>,
<span class="pl-s">url</span> = <span class="pl-s"><span class="pl-pds">{</span>https://www.sciencedirect.com/science/article/pii/S0925231222012656<span class="pl-pds">}</span></span>,
}</div> |