File size: 5,373 Bytes
b2bef28
 
 
 
 
 
 
 
 
 
 
1031135
 
 
 
 
 
 
 
 
 
b2bef28
1031135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2bef28
 
8900c37
b2bef28
 
 
 
ebddf1b
b2bef28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031135
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
datasets:
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/stheno-filtered-v1.1
- PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
pipeline_tag: text-generation
model-index:
- name: Azure_Dusk-v0.2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 34.67
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 17.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.66
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.45
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.37
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 22.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
      name: Open LLM Leaderboard
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/NGEOrcWYPDnFmvHinkXVk.png)

Following up on Crimson_Dawn-v0.2 we have Azure_Dusk-v0.2! Training on [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) this time I've added significantly more data, as well as trained using RSLoRA as opposed to regular LoRA. Another key change is training on ChatML as opposed to Mistral Formatting.

# Quants!
<strong>full</strong> / [exl2](https://huggingface.co/Epiculous/Azure_Dusk-v0.2-exl2) / [gguf](https://huggingface.co/Epiculous/Azure_Dusk-v0.2-GGUF)

## Prompting
The v0.2 models are trained on ChatML, the prompting structure goes a little something like this:

```
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
```

### Context and Instruct
The v0.2 models are trained on ChatML, please use that Context and Instruct template.

### Current Top Sampler Settings
[Spicy_Temp](https://files.catbox.moe/9npj0z.json) <br/>
[Violet_Twilight-Nitral-Special](https://files.catbox.moe/ot54u3.json) <br/>

## Training
Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here.

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Epiculous__Azure_Dusk-v0.2)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |14.03|
|IFEval (0-Shot)    |34.67|
|BBH (3-Shot)       |17.40|
|MATH Lvl 5 (4-Shot)| 1.66|
|GPQA (0-shot)      | 1.45|
|MuSR (0-shot)      | 6.37|
|MMLU-PRO (5-shot)  |22.60|