File size: 5,373 Bytes
b2bef28 1031135 b2bef28 1031135 b2bef28 8900c37 b2bef28 ebddf1b b2bef28 1031135 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
datasets:
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/stheno-filtered-v1.1
- PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
pipeline_tag: text-generation
model-index:
- name: Azure_Dusk-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 34.67
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 17.4
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.66
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.45
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.37
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 22.6
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
name: Open LLM Leaderboard
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/NGEOrcWYPDnFmvHinkXVk.png)
Following up on Crimson_Dawn-v0.2 we have Azure_Dusk-v0.2! Training on [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) this time I've added significantly more data, as well as trained using RSLoRA as opposed to regular LoRA. Another key change is training on ChatML as opposed to Mistral Formatting.
# Quants!
<strong>full</strong> / [exl2](https://huggingface.co/Epiculous/Azure_Dusk-v0.2-exl2) / [gguf](https://huggingface.co/Epiculous/Azure_Dusk-v0.2-GGUF)
## Prompting
The v0.2 models are trained on ChatML, the prompting structure goes a little something like this:
```
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
```
### Context and Instruct
The v0.2 models are trained on ChatML, please use that Context and Instruct template.
### Current Top Sampler Settings
[Spicy_Temp](https://files.catbox.moe/9npj0z.json) <br/>
[Violet_Twilight-Nitral-Special](https://files.catbox.moe/ot54u3.json) <br/>
## Training
Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here.
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Epiculous__Azure_Dusk-v0.2)
| Metric |Value|
|-------------------|----:|
|Avg. |14.03|
|IFEval (0-Shot) |34.67|
|BBH (3-Shot) |17.40|
|MATH Lvl 5 (4-Shot)| 1.66|
|GPQA (0-shot) | 1.45|
|MuSR (0-shot) | 6.37|
|MMLU-PRO (5-shot) |22.60|
|