---
base_model: EpistemeAI/Fireball-Llama-3.1-8B-Instruct-v1-16bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- dpo
---
# Uploaded model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** EpistemeAI/Fireball-Llama-3.1-8B-Instruct-v1-16bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[](https://github.com/unslothai/unsloth)
# Fireball-Llama-3.1-V1-Instruct #
## How to use
This repository contains Fireball-Llama-3.11-V1-Instruct , for use with transformers and with the original llama codebase.
### Use with transformers
Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
Make sure to update your transformers installation via pip install --upgrade transformers.
Example:
````py
!pip install -U transformers trl peft accelerate bitsandbytes
````
````py
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
base_model = "EpistemeAI/Fireball-Llama-3.1-8B-Instruct-v1dpo"
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
sys = "You are help assistant " \
"(Advanced Natural-based interaction for the language)."
messages = [
{"role": "system", "content": sys},
{"role": "user", "content": "What is DPO and ORPO fine tune?"},
]
#Method 1
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
for k,v in inputs.items():
inputs[k] = v.cuda()
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
results = tokenizer.batch_decode(outputs)[0]
print(results)
#Method 2
import transformers
pipe = transformers.pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=False, # langchain expects the full text
task='text-generation',
max_new_tokens=512, # max number of tokens to generate in the output
temperature=0.6, #temperature for more or less creative answers
do_sample=True,
top_p=0.9,
)
sequences = pipe(messages)
for seq in sequences:
print(f"{seq['generated_text']}")
````