legolasyiu
commited on
Commit
•
407bac8
1
Parent(s):
5ec2510
Update README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,70 @@ This llama model was trained 2x faster with [Unsloth](https://github.com/unsloth
|
|
24 |
Fireball-Llama-3.1-V1
|
25 |
|
26 |
<img src="https://huggingface.co/EpistemeAI/Fireball-Llama-3.1-8B-v1dpo/resolve/main/fireball-llama.JPG" width="200"/>
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
|
|
|
24 |
Fireball-Llama-3.1-V1
|
25 |
|
26 |
<img src="https://huggingface.co/EpistemeAI/Fireball-Llama-3.1-8B-v1dpo/resolve/main/fireball-llama.JPG" width="200"/>
|
27 |
+
# Fireball-Llama-3.11-V1
|
28 |
+
|
29 |
+
## How to use
|
30 |
+
This repository contains Fireball-Llama-3.11-V1 , for use with transformers and with the original llama codebase.
|
31 |
+
|
32 |
+
### Use with transformers
|
33 |
+
|
34 |
+
Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
|
35 |
+
|
36 |
+
Make sure to update your transformers installation via pip install --upgrade transformers.
|
37 |
+
Example:
|
38 |
+
````py
|
39 |
+
!pip install -U transformers trl peft accelerate bitsandbytes
|
40 |
+
````
|
41 |
+
|
42 |
+
````py
|
43 |
+
import torch
|
44 |
+
from transformers import (
|
45 |
+
AutoModelForCausalLM,
|
46 |
+
AutoTokenizer,
|
47 |
+
)
|
48 |
+
|
49 |
+
base_model = "EpistemeAI/Fireball-Llama-3.1-8B-v1dpo"
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
base_model,
|
52 |
+
torch_dtype=torch.bfloat16,
|
53 |
+
device_map="auto",
|
54 |
+
)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
56 |
+
|
57 |
+
sys = "You are help assistant " \
|
58 |
+
"(Advanced Natural-based interaction for the language)."
|
59 |
+
|
60 |
+
messages = [
|
61 |
+
{"role": "system", "content": sys},
|
62 |
+
{"role": "user", "content": "What is DPO and ORPO fine tune?"},
|
63 |
+
]
|
64 |
+
|
65 |
+
#Method 1
|
66 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
68 |
+
for k,v in inputs.items():
|
69 |
+
inputs[k] = v.cuda()
|
70 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
|
71 |
+
results = tokenizer.batch_decode(outputs)[0]
|
72 |
+
print(results)
|
73 |
+
|
74 |
+
#Method 2
|
75 |
+
import transformers
|
76 |
+
pipe = transformers.pipeline(
|
77 |
+
model=model,
|
78 |
+
tokenizer=tokenizer,
|
79 |
+
return_full_text=False, # langchain expects the full text
|
80 |
+
task='text-generation',
|
81 |
+
max_new_tokens=512, # max number of tokens to generate in the output
|
82 |
+
temperature=0.6, #temperature for more or less creative answers
|
83 |
+
do_sample=True,
|
84 |
+
top_p=0.9,
|
85 |
+
)
|
86 |
+
|
87 |
+
sequences = pipe(messages)
|
88 |
+
for seq in sequences:
|
89 |
+
print(f"{seq['generated_text']}")
|
90 |
+
````
|
91 |
|
92 |
|
93 |
|