TTSmodels / scripts /prepare_csv_wavs.py
Erlanggaa's picture
Upload folder using huggingface_hub
93d3f62 verified
import sys, os
sys.path.append(os.getcwd())
from pathlib import Path
import json
import shutil
import argparse
import csv
import torchaudio
from tqdm import tqdm
from datasets.arrow_writer import ArrowWriter
from model.utils import (
convert_char_to_pinyin,
)
PRETRAINED_VOCAB_PATH = Path(__file__).parent.parent / "data/Emilia_ZH_EN_pinyin/vocab.txt"
def is_csv_wavs_format(input_dataset_dir):
fpath = Path(input_dataset_dir)
metadata = fpath / "metadata.csv"
wavs = fpath / 'wavs'
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir()
def prepare_csv_wavs_dir(input_dir):
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}"
input_dir = Path(input_dir)
metadata_path = input_dir / "metadata.csv"
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix())
sub_result, durations = [], []
vocab_set = set()
polyphone = True
for audio_path, text in audio_path_text_pairs:
if not Path(audio_path).exists():
print(f"audio {audio_path} not found, skipping")
continue
audio_duration = get_audio_duration(audio_path)
# assume tokenizer = "pinyin" ("pinyin" | "char")
text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration})
durations.append(audio_duration)
vocab_set.update(list(text))
return sub_result, durations, vocab_set
def get_audio_duration(audio_path):
audio, sample_rate = torchaudio.load(audio_path)
num_channels = audio.shape[0]
return audio.shape[1] / (sample_rate * num_channels)
def read_audio_text_pairs(csv_file_path):
audio_text_pairs = []
parent = Path(csv_file_path).parent
with open(csv_file_path, mode='r', newline='', encoding='utf-8') as csvfile:
reader = csv.reader(csvfile, delimiter='|')
next(reader) # Skip the header row
for row in reader:
if len(row) >= 2:
audio_file = row[0].strip() # First column: audio file path
text = row[1].strip() # Second column: text
audio_file_path = parent / audio_file
audio_text_pairs.append((audio_file_path.as_posix(), text))
return audio_text_pairs
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune):
out_dir = Path(out_dir)
# save preprocessed dataset to disk
out_dir.mkdir(exist_ok=True, parents=True)
print(f"\nSaving to {out_dir} ...")
# dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom
# dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB")
raw_arrow_path = out_dir / "raw.arrow"
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer:
for line in tqdm(result, desc=f"Writing to raw.arrow ..."):
writer.write(line)
# dup a json separately saving duration in case for DynamicBatchSampler ease
dur_json_path = out_dir / "duration.json"
with open(dur_json_path.as_posix(), 'w', encoding='utf-8') as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
# vocab map, i.e. tokenizer
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
# if tokenizer == "pinyin":
# text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
voca_out_path = out_dir / "vocab.txt"
with open(voca_out_path.as_posix(), "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
if is_finetune:
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
shutil.copy2(file_vocab_finetune, voca_out_path)
else:
with open(voca_out_path, "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
dataset_name = out_dir.stem
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True):
if is_finetune:
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}"
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir)
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune)
def cli():
# finetune: python scripts/prepare_csv_wavs.py /path/to/input_dir /path/to/output_dir_pinyin
# pretrain: python scripts/prepare_csv_wavs.py /path/to/output_dir_pinyin --pretrain
parser = argparse.ArgumentParser(description="Prepare and save dataset.")
parser.add_argument('inp_dir', type=str, help="Input directory containing the data.")
parser.add_argument('out_dir', type=str, help="Output directory to save the prepared data.")
parser.add_argument('--pretrain', action='store_true', help="Enable for new pretrain, otherwise is a fine-tune")
args = parser.parse_args()
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain)
if __name__ == "__main__":
cli()