File size: 2,704 Bytes
e98d53a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
base_model: syedmuhammad/ConvNextV2-Diabetec-Retinopathy
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ConvNext-V2-Retinopathy
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9900990099009901
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ConvNext-V2-Retinopathy

This model is a fine-tuned version of [syedmuhammad/ConvNextV2-Diabetec-Retinopathy](https://huggingface.co/syedmuhammad/ConvNextV2-Diabetec-Retinopathy) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0219
- Accuracy: 0.9901

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.125         | 1.0   | 113  | 0.0339          | 0.9901   |
| 0.2206        | 2.0   | 227  | 0.0139          | 0.9901   |
| 0.1751        | 3.0   | 340  | 0.0114          | 0.9950   |
| 0.0599        | 4.0   | 454  | 0.0277          | 0.9950   |
| 0.1122        | 5.0   | 567  | 0.0328          | 0.9950   |
| 0.093         | 6.0   | 681  | 0.0240          | 0.9901   |
| 0.0673        | 7.0   | 794  | 0.0251          | 0.9950   |
| 0.0718        | 8.0   | 908  | 0.0458          | 0.9851   |
| 0.0632        | 9.0   | 1021 | 0.0477          | 0.9901   |
| 0.0263        | 10.0  | 1135 | 0.0399          | 0.9950   |
| 0.0304        | 11.0  | 1248 | 0.0295          | 0.9901   |
| 0.0892        | 12.0  | 1362 | 0.0330          | 0.9950   |
| 0.0227        | 13.0  | 1475 | 0.0287          | 0.9901   |
| 0.0253        | 14.0  | 1589 | 0.0262          | 0.9901   |
| 0.1242        | 14.93 | 1695 | 0.0219          | 0.9901   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1