Esmail275 commited on
Commit
f12e76a
1 Parent(s): 5777ca1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -5
README.md CHANGED
@@ -8,7 +8,28 @@ metrics:
8
  - f1
9
  model-index:
10
  - name: distilbert-base-multilingual-cased-finetuned
11
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -24,15 +45,33 @@ It achieves the following results on the evaluation set:
24
 
25
  ## Model description
26
 
27
- More information needed
 
28
 
29
  ## Intended uses & limitations
30
 
31
- More information needed
 
 
 
 
 
 
 
32
 
33
  ## Training and evaluation data
34
 
35
- More information needed
 
 
 
 
 
 
 
 
 
 
36
 
37
  ## Training procedure
38
 
@@ -68,4 +107,4 @@ The following hyperparameters were used during training:
68
  - Transformers 4.42.4
69
  - Pytorch 2.4.0+cu121
70
  - Datasets 2.21.0
71
- - Tokenizers 0.19.1
 
8
  - f1
9
  model-index:
10
  - name: distilbert-base-multilingual-cased-finetuned
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: emotone_ar
17
+ type: emotion
18
+ config: split
19
+ split: validation
20
+ args: split
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.6643
25
+ - name: F1
26
+ type: f1
27
+ value: 0.6611
28
+ datasets:
29
+ - emotone-ar-cicling2017/emotone_ar
30
+ language:
31
+ - ar
32
+ pipeline_tag: text-classification
33
  ---
34
 
35
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  ## Model description
47
 
48
+ The model has been trained to classify text inputs into distinct emotional categories based on the fine-tuned understanding of the emotions dataset.
49
+ The fine-tuned model has demonstrated high accuracy and F1 scores on the evaluation set.
50
 
51
  ## Intended uses & limitations
52
 
53
+ #### Intended Uses
54
+ - Sentiment analysis
55
+ - Emotional classification in text
56
+ - Emotion-based recommendation systems
57
+
58
+ #### Limitations
59
+ - May show biases based on the training dataset
60
+ - Optimized for emotional classification and may not cover nuanced emotional subtleties
61
 
62
  ## Training and evaluation data
63
 
64
+ Emotions dataset with labeled emotional categories [here](https://huggingface.co/datasets/emotone-ar-cicling2017/emotone_ar).
65
+
66
+ #### The emotional categories are as follows:
67
+ - LABEL_0 : none
68
+ - LABEL_1 : anger
69
+ - LABEL_2 : joy
70
+ - LABEL_3 : sadness
71
+ - LABEL_4 : love
72
+ - LABEL_5 : sympathy
73
+ - LABEL_6 : surprise
74
+ - LABEL_7 : fear
75
 
76
  ## Training procedure
77
 
 
107
  - Transformers 4.42.4
108
  - Pytorch 2.4.0+cu121
109
  - Datasets 2.21.0
110
+ - Tokenizers 0.19.1