--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned results: - task: name: Text Classification type: text-classification dataset: name: emotone_ar type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.6643 - name: F1 type: f1 value: 0.6611 datasets: - emotone-ar-cicling2017/emotone_ar language: - ar pipeline_tag: text-classification --- # distilbert-base-multilingual-cased-finetuned This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on Arabic tweets for Emotion detection dataset. It achieves the following results on the evaluation set: - Loss: 1.6740 - Accuracy: 0.6643 - F1: 0.6611 ## Model description The model has been trained to classify text inputs into distinct emotional categories based on the fine-tuned understanding of the emotions dataset. The fine-tuned model has demonstrated high accuracy and F1 scores on the evaluation set. ## Intended uses & limitations #### Intended Uses - Sentiment analysis - Emotional classification in text - Emotion-based recommendation systems #### Limitations - May show biases based on the training dataset - Optimized for emotional classification and may not cover nuanced emotional subtleties ## Training and evaluation data Emotions dataset with labeled emotional categories [here](https://huggingface.co/datasets/emotone-ar-cicling2017/emotone_ar). #### The emotional categories are as follows: - LABEL_0 : none - LABEL_1 : anger - LABEL_2 : joy - LABEL_3 : sadness - LABEL_4 : love - LABEL_5 : sympathy - LABEL_6 : surprise - LABEL_7 : fear ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4725 | 1.0 | 252 | 1.0892 | 0.6604 | 0.6625 | | 0.3392 | 2.0 | 504 | 1.2096 | 0.6594 | 0.6649 | | 0.2575 | 3.0 | 756 | 1.2745 | 0.6723 | 0.6706 | | 0.1979 | 4.0 | 1008 | 1.3719 | 0.6713 | 0.6666 | | 0.1757 | 5.0 | 1260 | 1.4239 | 0.6723 | 0.6652 | | 0.1414 | 6.0 | 1512 | 1.5074 | 0.6663 | 0.6666 | | 0.1073 | 7.0 | 1764 | 1.5703 | 0.6783 | 0.6722 | | 0.0812 | 8.0 | 2016 | 1.6218 | 0.6673 | 0.6638 | | 0.0615 | 9.0 | 2268 | 1.6676 | 0.6693 | 0.6642 | | 0.0531 | 10.0 | 2520 | 1.6740 | 0.6643 | 0.6611 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1