Gemma 7B instruct with Key-Value-Cache enabled in ONNX AWQ (4-bit) format
- Model creator: Google
- Original model: Gemma 7B instruct
Description
This repo contains the ONNX files of the ONNX conversion of Gemma 7B instruct done by Esperanto Technologies. The model is in the 4-bit format quantized with AWQ and has the KVC enabled.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. More here: AutoAWQ
How to download ONNX model and weight files
The easiest way to obtain the model is to clone this whole repo.
Alternatively you can download the files is using the huggingface-hub
Python library.
pip3 install huggingface-hub>=0.17.1
Then you can download any individual model file to the current directory, at high speed, with a command like this:
huggingface-cli download Esperanto/gemma-7b-it-kvc-AWQ-int4-onnx --local-dir gemma-7b-it-kvc-AWQ-int4-onnx --local-dir-use-symlinks False
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
How to run from Python code using ONNXRuntime
This model can easily be ran in a CPU using ONNXRuntime.
First install the packages
pip3 install onnx==1.16.1
pip3 install onnxruntime==1.17.1
Example code: generate text with this model
We define the loop with greedy decoding:
import numpy as np
import onnxruntime
import onnx
from transformers import AutoTokenizer
def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context):
model = onnx.load(model_path)
#we create the inputs for the first iteration
input_tensor = tokenizer(prompt, return_tensors="pt")
prompt_size = len(input_tensor['input_ids'][0])
actual_input = input_tensor['input_ids']
if prompt_size < window:
actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'),
actual_input), axis=1)
if prompt_size + max_gen_tokens > total_sequence:
print("ERROR: Longer total sequence is needed!")
return
first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'),
np.ones((1, window), dtype = 'int64')), axis=1)
max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt
inputs_names =[node.name for node in model.graph.input]
output_names =[node.name for node in model.graph.output]
n_heads = 16 #gqa-heads of the kvc
inputs_dict = {}
inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy()
inputs_dict['attention_mask'] = first_attention
for name in inputs_names:
if name == 'input_ids' or name == 'attention_mask': continue
inputs_dict[name] = np.zeros([1, n_heads, context-window, 256], dtype="float16")
index = 0
new_token = np.array([10])
next_index = window
old_j = 0
total_input = actual_input.numpy()
rt_session = onnxruntime.InferenceSession(model_path)
## We run the inferences
while next_index < max_gen_tokens:
if new_token.any() == tokenizer.eos_token_id:
break
#inference
output = rt_session.run(output_names, inputs_dict)
outs_dictionary = {name: content for (name, content) in zip (output_names, output)}
#we prepare the inputs for the next inference
for name in inputs_names:
if name == 'input_ids':
old_j = next_index
if next_index < prompt_size:
if prompt_size - next_index >= window: next_index += window
else: next_index = prompt_size
j = next_index - window
else:
next_index +=1
j = next_index - window
new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window)
total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1)
inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window)
elif name == 'attention_mask':
inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1)
else:
old_name = name.replace("past_key_values", "present")
inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :]
answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
return answer
We now run the inferences:
tokenizer = AutoTokenizer.from_pretrained("Esperanto/gemma-7b-it-kvc-AWQ-int4-onnx")
model_path = "gemma-7b-it-kvc-AWQ-int4-onnx/model.onnx"
max_gen_tokens = 20 #number of tokens we want tog eneral
total_sequence = 128 #total sequence_length
context = 1024 #the context to extend the kvc
window = 16 #number of tokens we want to parse at the time
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context)
print(generated)
- Downloads last month
- 4