File size: 2,471 Bytes
27d0e25
314ad72
27d0e25
 
aeec3ce
27d0e25
 
aeec3ce
 
27d0e25
 
 
 
 
aeec3ce
27d0e25
 
 
 
 
 
 
aeec3ce
314ad72
aeec3ce
27d0e25
 
 
 
 
 
 
314ad72
27d0e25
314ad72
 
27d0e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314ad72
27d0e25
 
 
 
7e626a1
 
314ad72
 
 
 
 
 
 
 
 
 
 
 
27d0e25
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
- common_voice_13_0
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: XLS-R-demo-google-colab-Ezra_William_Prod_3
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_13_0
      type: common_voice_13_0
      config: id
      split: validation
      args: id
    metrics:
    - type: wer
      value: 0.697900059217419
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLS-R-demo-google-colab-Ezra_William_Prod_3

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7896
- Wer: 0.6979

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.4479        | 1.0   | 121  | 2.9741          | 1.0    |
| 2.9543        | 2.0   | 242  | 2.9297          | 1.0    |
| 2.9306        | 3.0   | 363  | 2.9112          | 1.0    |
| 2.9216        | 4.0   | 484  | 2.9071          | 1.0    |
| 2.8968        | 5.0   | 605  | 2.8713          | 1.0    |
| 2.8822        | 6.0   | 726  | 2.8446          | 1.0    |
| 2.8421        | 7.0   | 847  | 2.5157          | 1.0    |
| 2.5763        | 8.0   | 968  | 1.5780          | 0.9964 |
| 1.9449        | 9.0   | 1089 | 0.9864          | 0.8132 |
| 1.0398        | 10.0  | 1210 | 0.8565          | 0.7348 |
| 0.9162        | 11.0  | 1331 | 0.7941          | 0.7043 |
| 0.8909        | 12.0  | 1452 | 0.7896          | 0.6979 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1