--- license: apache-2.0 tags: - generated_from_trainer datasets: - xtreme_s metrics: - wer base_model: facebook/wav2vec2-large-xlsr-53 model-index: - name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod6 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: xtreme_s type: xtreme_s config: fleurs.id_id split: test args: fleurs.id_id metrics: - type: wer value: 0.5287382128423889 name: Wer --- # wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod6 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the xtreme_s dataset. It achieves the following results on the evaluation set: - Loss: 0.9531 - Wer: 0.5287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2079 | 18.18 | 300 | 2.8502 | 1.0 | | 1.5727 | 36.36 | 600 | 0.8489 | 0.6749 | | 0.1925 | 54.55 | 900 | 1.0067 | 0.5868 | | 0.0963 | 72.73 | 1200 | 0.9531 | 0.5287 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1