--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-large-xlsr-53 datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod13 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: id split: test args: id metrics: - type: wer value: 0.5518989675516224 name: Wer --- # wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod13 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5399 - Wer: 0.5519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7217 | 0.9 | 500 | 2.9517 | 1.0 | | 2.9149 | 1.8 | 1000 | 2.8778 | 1.0 | | 2.851 | 2.7 | 1500 | 2.6437 | 1.0 | | 2.0653 | 3.6 | 2000 | 1.0367 | 0.8727 | | 1.1893 | 4.5 | 2500 | 0.7226 | 0.7006 | | 0.9685 | 5.4 | 3000 | 0.6301 | 0.6358 | | 0.8742 | 6.29 | 3500 | 0.5778 | 0.5890 | | 0.8076 | 7.19 | 4000 | 0.5576 | 0.5696 | | 0.7624 | 8.09 | 4500 | 0.5412 | 0.5525 | | 0.7604 | 8.99 | 5000 | 0.5399 | 0.5519 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2