--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-xls-r-300m datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod17 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: id split: test args: id metrics: - type: wer value: 0.3274336283185841 name: Wer --- # wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod17 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3395 - Wer: 0.3274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9137 | 1.0 | 278 | 2.8202 | 1.0 | | 0.8546 | 2.0 | 556 | 0.6314 | 0.6728 | | 0.4738 | 3.0 | 834 | 0.4380 | 0.4837 | | 0.3338 | 4.0 | 1112 | 0.4024 | 0.4490 | | 0.2557 | 5.0 | 1390 | 0.3622 | 0.4295 | | 0.1972 | 6.0 | 1668 | 0.3381 | 0.3795 | | 0.1644 | 7.0 | 1946 | 0.3632 | 0.3706 | | 0.1442 | 8.0 | 2224 | 0.3352 | 0.3578 | | 0.1287 | 9.0 | 2502 | 0.3441 | 0.3496 | | 0.1122 | 10.0 | 2780 | 0.3501 | 0.3437 | | 0.1035 | 11.0 | 3058 | 0.3389 | 0.3322 | | 0.0961 | 12.0 | 3336 | 0.3395 | 0.3274 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1