--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod19 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.34075405604719766 --- # wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod19 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3575 - Wer: 0.3408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9583 | 1.0 | 278 | 2.9214 | 1.0 | | 2.8606 | 2.0 | 556 | 2.7724 | 1.0 | | 1.1528 | 3.0 | 834 | 0.6902 | 0.6319 | | 0.7003 | 4.0 | 1112 | 0.4844 | 0.4883 | | 0.5853 | 5.0 | 1390 | 0.4030 | 0.4158 | | 0.4685 | 6.0 | 1668 | 0.3945 | 0.3838 | | 0.4273 | 7.0 | 1946 | 0.3824 | 0.3687 | | 0.4116 | 8.0 | 2224 | 0.3643 | 0.3474 | | 0.3858 | 9.0 | 2502 | 0.3575 | 0.3408 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1