Update README.md
Browse files
README.md
CHANGED
@@ -251,139 +251,7 @@ You can finetune this model on your own dataset.
|
|
251 |
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
252 |
-->
|
253 |
|
254 |
-
## Training Details
|
255 |
-
|
256 |
-
### Training Hyperparameters
|
257 |
-
#### Non-Default Hyperparameters
|
258 |
-
|
259 |
-
- `eval_strategy`: steps
|
260 |
-
- `per_device_eval_batch_size`: 4
|
261 |
-
- `gradient_accumulation_steps`: 4
|
262 |
-
- `learning_rate`: 2e-05
|
263 |
-
- `max_steps`: 1500
|
264 |
-
- `lr_scheduler_type`: cosine
|
265 |
-
- `warmup_ratio`: 0.1
|
266 |
-
- `warmup_steps`: 5
|
267 |
-
- `bf16`: True
|
268 |
-
- `tf32`: True
|
269 |
-
- `optim`: adamw_torch_fused
|
270 |
-
- `gradient_checkpointing`: True
|
271 |
-
- `gradient_checkpointing_kwargs`: {'use_reentrant': False}
|
272 |
-
- `batch_sampler`: no_duplicates
|
273 |
-
|
274 |
-
#### All Hyperparameters
|
275 |
-
<details><summary>Click to expand</summary>
|
276 |
-
|
277 |
-
- `overwrite_output_dir`: False
|
278 |
-
- `do_predict`: False
|
279 |
-
- `eval_strategy`: steps
|
280 |
-
- `prediction_loss_only`: True
|
281 |
-
- `per_device_train_batch_size`: 8
|
282 |
-
- `per_device_eval_batch_size`: 4
|
283 |
-
- `per_gpu_train_batch_size`: None
|
284 |
-
- `per_gpu_eval_batch_size`: None
|
285 |
-
- `gradient_accumulation_steps`: 4
|
286 |
-
- `eval_accumulation_steps`: None
|
287 |
-
- `learning_rate`: 2e-05
|
288 |
-
- `weight_decay`: 0.0
|
289 |
-
- `adam_beta1`: 0.9
|
290 |
-
- `adam_beta2`: 0.999
|
291 |
-
- `adam_epsilon`: 1e-08
|
292 |
-
- `max_grad_norm`: 1.0
|
293 |
-
- `num_train_epochs`: 3.0
|
294 |
-
- `max_steps`: 1500
|
295 |
-
- `lr_scheduler_type`: cosine
|
296 |
-
- `lr_scheduler_kwargs`: {}
|
297 |
-
- `warmup_ratio`: 0.1
|
298 |
-
- `warmup_steps`: 5
|
299 |
-
- `log_level`: passive
|
300 |
-
- `log_level_replica`: warning
|
301 |
-
- `log_on_each_node`: True
|
302 |
-
- `logging_nan_inf_filter`: True
|
303 |
-
- `save_safetensors`: True
|
304 |
-
- `save_on_each_node`: False
|
305 |
-
- `save_only_model`: False
|
306 |
-
- `restore_callback_states_from_checkpoint`: False
|
307 |
-
- `no_cuda`: False
|
308 |
-
- `use_cpu`: False
|
309 |
-
- `use_mps_device`: False
|
310 |
-
- `seed`: 42
|
311 |
-
- `data_seed`: None
|
312 |
-
- `jit_mode_eval`: False
|
313 |
-
- `use_ipex`: False
|
314 |
-
- `bf16`: True
|
315 |
-
- `fp16`: False
|
316 |
-
- `fp16_opt_level`: O1
|
317 |
-
- `half_precision_backend`: auto
|
318 |
-
- `bf16_full_eval`: False
|
319 |
-
- `fp16_full_eval`: False
|
320 |
-
- `tf32`: True
|
321 |
-
- `local_rank`: 0
|
322 |
-
- `ddp_backend`: None
|
323 |
-
- `tpu_num_cores`: None
|
324 |
-
- `tpu_metrics_debug`: False
|
325 |
-
- `debug`: []
|
326 |
-
- `dataloader_drop_last`: True
|
327 |
-
- `dataloader_num_workers`: 0
|
328 |
-
- `dataloader_prefetch_factor`: None
|
329 |
-
- `past_index`: -1
|
330 |
-
- `disable_tqdm`: False
|
331 |
-
- `remove_unused_columns`: True
|
332 |
-
- `label_names`: None
|
333 |
-
- `load_best_model_at_end`: False
|
334 |
-
- `ignore_data_skip`: False
|
335 |
-
- `fsdp`: []
|
336 |
-
- `fsdp_min_num_params`: 0
|
337 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
338 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
339 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
340 |
-
- `deepspeed`: None
|
341 |
-
- `label_smoothing_factor`: 0.0
|
342 |
-
- `optim`: adamw_torch_fused
|
343 |
-
- `optim_args`: None
|
344 |
-
- `adafactor`: False
|
345 |
-
- `group_by_length`: False
|
346 |
-
- `length_column_name`: length
|
347 |
-
- `ddp_find_unused_parameters`: None
|
348 |
-
- `ddp_bucket_cap_mb`: None
|
349 |
-
- `ddp_broadcast_buffers`: False
|
350 |
-
- `dataloader_pin_memory`: True
|
351 |
-
- `dataloader_persistent_workers`: False
|
352 |
-
- `skip_memory_metrics`: True
|
353 |
-
- `use_legacy_prediction_loop`: False
|
354 |
-
- `push_to_hub`: False
|
355 |
-
- `resume_from_checkpoint`: None
|
356 |
-
- `hub_model_id`: None
|
357 |
-
- `hub_strategy`: every_save
|
358 |
-
- `hub_private_repo`: False
|
359 |
-
- `hub_always_push`: False
|
360 |
-
- `gradient_checkpointing`: True
|
361 |
-
- `gradient_checkpointing_kwargs`: {'use_reentrant': False}
|
362 |
-
- `include_inputs_for_metrics`: False
|
363 |
-
- `eval_do_concat_batches`: True
|
364 |
-
- `fp16_backend`: auto
|
365 |
-
- `push_to_hub_model_id`: None
|
366 |
-
- `push_to_hub_organization`: None
|
367 |
-
- `mp_parameters`:
|
368 |
-
- `auto_find_batch_size`: False
|
369 |
-
- `full_determinism`: False
|
370 |
-
- `torchdynamo`: None
|
371 |
-
- `ray_scope`: last
|
372 |
-
- `ddp_timeout`: 1800
|
373 |
-
- `torch_compile`: False
|
374 |
-
- `torch_compile_backend`: None
|
375 |
-
- `torch_compile_mode`: None
|
376 |
-
- `dispatch_batches`: None
|
377 |
-
- `split_batches`: None
|
378 |
-
- `include_tokens_per_second`: False
|
379 |
-
- `include_num_input_tokens_seen`: False
|
380 |
-
- `neftune_noise_alpha`: None
|
381 |
-
- `optim_target_modules`: None
|
382 |
-
- `batch_eval_metrics`: False
|
383 |
-
- `batch_sampler`: no_duplicates
|
384 |
-
- `multi_dataset_batch_sampler`: proportional
|
385 |
|
386 |
-
</details>
|
387 |
|
388 |
### Training Logs
|
389 |
| Epoch | Step | Training Loss | retrival loss |
|
@@ -391,31 +259,8 @@ You can finetune this model on your own dataset.
|
|
391 |
| 0.6466 | 500 | 0.0424 | 0.0060 |
|
392 |
|
393 |
|
394 |
-
|
395 |
-
|
396 |
-
- Sentence Transformers: 3.0.1
|
397 |
-
- Transformers: 4.41.2
|
398 |
-
- PyTorch: 2.2.0+cu121
|
399 |
-
- Accelerate: 0.32.1
|
400 |
-
- Datasets: 2.20.0
|
401 |
-
- Tokenizers: 0.19.1
|
402 |
-
|
403 |
-
## Citation
|
404 |
-
|
405 |
-
### BibTeX
|
406 |
-
|
407 |
-
#### Sentence Transformers
|
408 |
-
```bibtex
|
409 |
-
@inproceedings{reimers-2019-sentence-bert,
|
410 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
411 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
412 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
413 |
-
month = "11",
|
414 |
-
year = "2019",
|
415 |
-
publisher = "Association for Computational Linguistics",
|
416 |
-
url = "https://arxiv.org/abs/1908.10084",
|
417 |
-
}
|
418 |
-
```
|
419 |
|
420 |
<!--
|
421 |
## Glossary
|
|
|
251 |
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
252 |
-->
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
|
|
255 |
|
256 |
### Training Logs
|
257 |
| Epoch | Step | Training Loss | retrival loss |
|
|
|
259 |
| 0.6466 | 500 | 0.0424 | 0.0060 |
|
260 |
|
261 |
|
262 |
+
|
263 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
<!--
|
266 |
## Glossary
|