{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7984cbbb1f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 42336, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718453129242962703, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpyTr1Dx0W8xUUWPaH5fj2t/mQ89jS8uwAAgD8AAIA/GhWdPaKZqT86nc4+JLPBvr0axD2cFBA+AAAAAAAAAADm6fu9Sf1XPoG0GT5xyWO+O2AFPfy2PjwAAAAAAAAAAHPAtr0FDI+7PhgGuz3aoDzZmsy8+ouIPQAAAAAAAIA/GkRovijC5z4+V4w+iaeUvvgLKr0FJPY9AAAAAAAAAAAzs2k8ZV+EPyIYgL0zbNC+gQi7OptfJb0AAAAAAAAAAMC8xz32GFq6EKubNQGejTAPshi7qgOutAAAgD8AAIA/M4PIuyqovT9y0/u8M/ZKu9f0VzzqRYy8AAAAAAAAAADKybc+Z5/sPjK1Ib4BMsa+DMypPttPI74AAAAAAAAAAMD4gD3WuU0/i2uuPUTHrr6Y2Cw9SDRTvAAAAAAAAAAAM89jvMP5Bbp6wRQ096/BLn+njrquQpOzAACAPwAAgD/mnwW9CaloP1vEtb0smau+VFievQuYd70AAAAAAAAAAE1szr22kTg9NLu4Pu8eR75SXeM9gNYNPQAAAAAAAAAAZhu1PW6D6T2Wl7+9W0aBvnbzLjwwROI8AAAAAAAAAABmFG4+nuUZP0OL473+kI6+50TlPcWlfb0AAAAAAAAAALOKrb1m9Ks/IPQ5vv8Xxb6trKy9vKhFvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.967232, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD1T1PFefKMAWyUTSIBjAF0lEdAlmoOkcjqwHV9lChoBkdAcAbAskIHDGgHTV4BaAhHQJZqN4nndO91fZQoaAZHQHB1r/KhcqxoB01UAWgIR0CWa6aKUFB6dX2UKGgGR0ByHy/7BO58aAdNMwFoCEdAlm6D50r9VHV9lChoBkdAcbFZRbbDdmgHTUEBaAhHQJZvm3EyckN1fZQoaAZHQHH/zgAIY3xoB0v7aAhHQJZwCmwaBI51fZQoaAZHQHFydjTa0yBoB00WAWgIR0CWcF5eqrBCdX2UKGgGR0BwL9fsu3+daAdNKAFoCEdAlnGGb1AZ9HV9lChoBkdAclEHuqm0mmgHTW4BaAhHQJZyDU7Sy+p1fZQoaAZHQHNNUzKs+3ZoB005AWgIR0CWchzD4xk/dX2UKGgGR0Bw5fAN5MURaAdL/WgIR0CWch1IiC8OdX2UKGgGR0BwZE81XNkfaAdNJAFoCEdAlnIuvECNj3V9lChoBkdAcJ+pKzzErGgHTTwBaAhHQJZzn0dzXBh1fZQoaAZHQHDwfzjFQ2xoB00cAWgIR0CWdI9G7SRbdX2UKGgGR0BxVa1PWQOnaAdNQAFoCEdAlnSvszEaVHV9lChoBkdAcB8uxrzoU2gHTRABaAhHQJZ1D7tRekZ1fZQoaAZHQFPQfBvaURpoB03oA2gIR0CWdkQnhKlIdX2UKGgGR0BwDN0wJw85aAdNQQFoCEdAlnZZLEk0JnV9lChoBkdAcfCbD/EOy2gHTTABaAhHQJaIhPEbYK91fZQoaAZHQG69INmUW2xoB00DAWgIR0CWiPI5o4+9dX2UKGgGR0BQph4t6HCXaAdLyWgIR0CWiQ7Qb+98dX2UKGgGR0BtDe+yquKXaAdNCwFoCEdAlonHr2QGOnV9lChoBkdAcbCr/82rGWgHTSIBaAhHQJaKvJV81Gd1fZQoaAZHQG5B8stkFwFoB00MAWgIR0CWi29fTkQxdX2UKGgGR0Bw9y7jDKoyaAdNDQFoCEdAlouaCcwxnHV9lChoBkdAcK9Eehf0E2gHTS4BaAhHQJaMiClJpWV1fZQoaAZHQHCWA/TspodoB01BAWgIR0CWjRoUBXCCdX2UKGgGR0By7UH5aePJaAdNIwFoCEdAlo3JElVtGnV9lChoBkdAcFpvyLAHmmgHTQcBaAhHQJaN9UJfICF1fZQoaAZHQG9pPwmVqvhoB00lAWgIR0CWjsfLLZBcdX2UKGgGR0BwZBh3JPqLaAdNJgFoCEdAlo9r/GVAzHV9lChoBkdAbdYk/r0J4WgHTRcBaAhHQJaQX3qRlpZ1fZQoaAZHQHKfIDTz/ZNoB01NAWgIR0CWkinO0LMLdX2UKGgGR0BsqaOR1X/6aAdNPwFoCEdAlpKYlY2bX3V9lChoBkdAbumKIi1RcmgHTRACaAhHQJaSsakyk9F1fZQoaAZHQFLacwxnFpBoB0u9aAhHQJaSuL5ylvZ1fZQoaAZHQHJxTxLCemNoB002AWgIR0CWkstYB/7SdX2UKGgGR0Bx2sRkEs8QaAdNBQFoCEdAlpP/7SApa3V9lChoBkdAb3bpJPIn0GgHTUoBaAhHQJaUWQhfShJ1fZQoaAZHQHDZWFi8WbhoB01pAWgIR0CWlH2cJ+lTdX2UKGgGR0BwGijWTX8PaAdNBwFoCEdAlpV93wCr93V9lChoBkdAbzYIMz/IbWgHTYkBaAhHQJaXOF0xM391fZQoaAZHQHGP3iaRZEFoB00SAWgIR0CWl41YyO7ydX2UKGgGR0BtIN7OVxCIaAdNawFoCEdAlpmTlkpZwHV9lChoBkdAcnR0Zm7J4mgHTSYBaAhHQJaZ9MFlkH51fZQoaAZHQEgMTUy57PZoB0vOaAhHQJab6vA44qB1fZQoaAZHQHMF3wLE1l5oB01yAWgIR0CWnGKNQ0oCdX2UKGgGR0BwEX1e0G/vaAdNFgFoCEdAlpx8GX5WR3V9lChoBkdAcedGUOd5IGgHTSMBaAhHQJadStzS1E51fZQoaAZHQG4R/su3+ddoB005AWgIR0CWnZRHPNVzdX2UKGgGR0BvJ2CGvfTDaAdNKQFoCEdAlp9uUt7KJXV9lChoBkdAbvLDCxeLN2gHTR8BaAhHQJaffzH0btJ1fZQoaAZHQHGY313+uNhoB01iAWgIR0CWoC2ll9SddX2UKGgGR0Bw/QhNdqtYaAdNYAFoCEdAlqA8IiTt9nV9lChoBkdAbaLWT5ftyGgHTTYBaAhHQJalJ0CA+ZB1fZQoaAZHQG5LXOv+wTxoB005AWgIR0CWpZ9TP0I1dX2UKGgGR0BxkyULUkOaaAdNagJoCEdAlqXL04BFNXV9lChoBkdAbqpxjJ+2E2gHTRYBaAhHQJamY1WKdhB1fZQoaAZHQHDict9QXRBoB02hAWgIR0CWpuzz3AVPdX2UKGgGR0BypVu0kWykaAdNJwFoCEdAlqjbsKLKm3V9lChoBkdAb+yNayKNymgHTUcBaAhHQJaplTLns9l1fZQoaAZHQG/tb5dnkDJoB00hAWgIR0CWqurBTGYKdX2UKGgGR0Bxv1H7P6bfaAdNVgFoCEdAlqsjua4MF3V9lChoBkdAbzOr5qM3qGgHTRoBaAhHQJarQLqlgtx1fZQoaAZHQHEVPkzXSShoB01wAWgIR0CWq2LzPKMedX2UKGgGR0BtVqyv9tMxaAdNYgFoCEdAlqu/1DjR2XV9lChoBkdAcg0ZiNKh+WgHTT4BaAhHQJar9r8BMi91fZQoaAZHQG1ySZKFqSJoB001AWgIR0CWrBpeNT99dX2UKGgGR0BynKV6eGwiaAdNBwJoCEdAlr/12NedCnV9lChoBkdAcqgvmHP/rGgHTSQBaAhHQJbAFoduHet1fZQoaAZHQHExXvhIe5poB00gAWgIR0CWwIRrJr+HdX2UKGgGR0Bkw0VclgMMaAdN6ANoCEdAlsDbGFSKnHV9lChoBkdAbi4zZ6D5CWgHTTcBaAhHQJbBBXFLnLd1fZQoaAZHQHIg/FNtZV5oB0v/aAhHQJbC/QRf4RF1fZQoaAZHQHHAy4axX4loB00dAWgIR0CWw0yfthNNdX2UKGgGR0BxsxSP2f03aAdNCgFoCEdAlsSxs/IKdHV9lChoBkdAcTyxeb/ff2gHTbMBaAhHQJbGCTr3TNN1fZQoaAZHQHEUq33Hq/xoB02qAWgIR0CWxlZflZHNdX2UKGgGR0Bw5UcBEKE4aAdNMQFoCEdAlsZpVn27F3V9lChoBkdAcA1hM8HObGgHTSIBaAhHQJbGhdOZb6h1fZQoaAZHQHKfLDl5nlJoB00hAWgIR0CWxtYv38GcdX2UKGgGR0BxVdbHIZIhaAdNTQFoCEdAlsdqqOtGNXV9lChoBkdASJOtGNJe3WgHS9VoCEdAlsf8JUo8ZHV9lChoBkdAUJZLQHAymGgHS+1oCEdAlshfms/6f3V9lChoBkdAcKO81n/T9mgHTXABaAhHQJbIpQ3xWkt1fZQoaAZHQHGGv5gw485oB01nAWgIR0CWyN6Rhc7hdX2UKGgGR0BvccILPUrkaAdNPgFoCEdAlsoaM72crnV9lChoBkdAcyGJ2t+1B2gHTUgBaAhHQJbKfaxoqTd1fZQoaAZHQHEZ8LKFIupoB0v8aAhHQJbLBybQTmJ1fZQoaAZHQHEqY7FKkEdoB0v9aAhHQJbLTqoqCpZ1fZQoaAZHQHDXEdmxt55oB01PAWgIR0CWy4ebutwKdX2UKGgGR0BuJYhY/3WXaAdNEgFoCEdAlszwvL5h0HV9lChoBkdAcAtTzd1uBWgHS/9oCEdAls4YW1twaXV9lChoBkdAcmTPVNHpbGgHTRIBaAhHQJbOhEqlP8B1fZQoaAZHQG7W3ljmSyNoB00PAWgIR0CWzuyBClabdX2UKGgGR0Bx0dvn8sMBaAdNAAFoCEdAltA09ZA6dXV9lChoBkdAb0g4S6DoQmgHTUQBaAhHQJbQ4ZVGTcJ1fZQoaAZHQHD/1iF0xM5oB002AWgIR0CW0O5kK/mDdX2UKGgGR0BvSz+tKZlWaAdNNwFoCEdAltGhIBikPHV9lChoBkdAcPmwrDqGDmgHTRoBaAhHQJbRtqnFYMh1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}