--- library_name: transformers language: - lv license: apache-2.0 base_model: FelixK7/whisper-medium-lv-ver2 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper medium LV - Felikss Kleins results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_0 config: lv split: None args: 'config: lv, split: test' metrics: - name: Wer type: wer value: 19.39252336448598 --- # Whisper medium LV - Felikss Kleins This model is a fine-tuned version of [FelixK7/whisper-medium-lv-ver2](https://huggingface.co/FelixK7/whisper-medium-lv-ver2) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2882 - Wer: 19.3925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | No log | 99.0002 | 200 | 0.1666 | 11.4486 | | 0.0028 | 199.0002 | 400 | 0.2083 | 13.5514 | | 0.0007 | 299.0002 | 600 | 0.2815 | 20.7944 | | 0.0008 | 399.0002 | 800 | 0.2882 | 19.3925 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.0.1 - Datasets 3.0.1 - Tokenizers 0.20.1