Fer14 commited on
Commit
44d9a97
1 Parent(s): ebba1fd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.47 +/- 0.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aebed7ff1219034cc688c7add55c9be27b03b1ac6b32ebb4fd6bc71b9f65eafb
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9eb9253040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f9eb9250ac0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678892988440153293,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAn9nsPg7w9jwDdBc/n9nsPg7w9jwDdBc/n9nsPg7w9jwDdBc/n9nsPg7w9jwDdBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3NL0vtpYR7/OjCK+Gqiuv19fcL+/Jpk8HACmv0CZij4mGzG+BXHQv0nK0z6sDH6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.46259782 0.03014376 0.59161395]\n [0.46259782 0.03014376 0.59161395]\n [0.46259782 0.03014376 0.59161395]\n [0.46259782 0.03014376 0.59161395]]",
60
+ "desired_goal": "[[-0.47817123 -0.7786995 -0.15874025]\n [-1.364505 -0.93895525 0.01869523]\n [-1.2968783 0.27070045 -0.17295513]\n [-1.6284491 0.4136527 -0.99238086]]",
61
+ "observation": "[[ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]\n [ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]\n [ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]\n [ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAF6/jPXE/Zj2fCA8+rQl0PaByFL3WzVw9QtcnvZgodT31RoM+4nlovfldMb0y8fo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.1111738 0.05621285 0.13968132]\n [ 0.05957954 -0.03624213 0.05390724]\n [-0.04097677 0.05985317 0.25640073]\n [-0.05675686 -0.04330251 0.12253036]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyxDHurgtAMCUhpRSlIwBbJRLMowBdJRHQKWzb2fTTfB1fZQoaAZoCWgPQwiUFcPVAdAPwJSGlFKUaBVLMmgWR0ClszT4k/r0dX2UKGgGaAloD0MI/iYUIuDwEsCUhpRSlGgVSzJoFkdApbL48p1A7nV9lChoBmgJaA9DCH6oNGJmH/K/lIaUUpRoFUsyaBZHQKWyr0JWvKV1fZQoaAZoCWgPQwi7YkZ4ezABwJSGlFKUaBVLMmgWR0CltKjHwPRRdX2UKGgGaAloD0MIHhmrzf/rAsCUhpRSlGgVSzJoFkdApbRvJJXhfnV9lChoBmgJaA9DCPxSP28qkvi/lIaUUpRoFUsyaBZHQKW0MwpON5t1fZQoaAZoCWgPQwj+nIL8bMQBwJSGlFKUaBVLMmgWR0Cls+o9C/oJdX2UKGgGaAloD0MIUvF/R1TIDMCUhpRSlGgVSzJoFkdApbW349HMEHV9lChoBmgJaA9DCB6M2CeAIg3AlIaUUpRoFUsyaBZHQKW1fYraufV1fZQoaAZoCWgPQwhQwkzbvzIGwJSGlFKUaBVLMmgWR0CltUFd1MdtdX2UKGgGaAloD0MIxeI3hZVKCsCUhpRSlGgVSzJoFkdApbT35k9U0nV9lChoBmgJaA9DCPpCyHn/fwDAlIaUUpRoFUsyaBZHQKW2zJQLux91fZQoaAZoCWgPQwiOWmH6XiMBwJSGlFKUaBVLMmgWR0CltpIqbz9TdX2UKGgGaAloD0MIaK8+Hvqu/L+UhpRSlGgVSzJoFkdApbZV5hScb3V9lChoBmgJaA9DCA4sR8hAHv2/lIaUUpRoFUsyaBZHQKW2DFrEcbR1fZQoaAZoCWgPQwgQy2YOSQ0HwJSGlFKUaBVLMmgWR0CluF2uoxYadX2UKGgGaAloD0MIbVSnA1kP9r+UhpRSlGgVSzJoFkdApbgkE5hjOXV9lChoBmgJaA9DCEiphCf0GgfAlIaUUpRoFUsyaBZHQKW36bRWtEJ1fZQoaAZoCWgPQwi1ozhHHV3/v5SGlFKUaBVLMmgWR0Clt6Esz2vjdX2UKGgGaAloD0MIiQeUTbmC8L+UhpRSlGgVSzJoFkdApboerZJ04nV9lChoBmgJaA9DCLAgzVg03QjAlIaUUpRoFUsyaBZHQKW55RUm2LJ1fZQoaAZoCWgPQwg5fqg0YoYFwJSGlFKUaBVLMmgWR0CluamrCFbndX2UKGgGaAloD0MIi6iJPh8lAcCUhpRSlGgVSzJoFkdApblhHPNVznV9lChoBmgJaA9DCCtsBrggG/C/lIaUUpRoFUsyaBZHQKW72xYaHbh1fZQoaAZoCWgPQwjrHAOy17v3v5SGlFKUaBVLMmgWR0Clu6F8ohIOdX2UKGgGaAloD0MIFVeVfVckAsCUhpRSlGgVSzJoFkdApbtmJJoTPHV9lChoBmgJaA9DCDnThO0nQxDAlIaUUpRoFUsyaBZHQKW7HerMkhR1fZQoaAZoCWgPQwgcl3FTAw36v5SGlFKUaBVLMmgWR0ClvZZnlGPQdX2UKGgGaAloD0MIb/Wc9L7x+L+UhpRSlGgVSzJoFkdApb1c6eXiSHV9lChoBmgJaA9DCAGJJlDEIvi/lIaUUpRoFUsyaBZHQKW9IXUpd8l1fZQoaAZoCWgPQwhRZoNMMrIAwJSGlFKUaBVLMmgWR0ClvNiSRr8BdX2UKGgGaAloD0MINqypLAq7+r+UhpRSlGgVSzJoFkdApb+CeiBXjnV9lChoBmgJaA9DCGSw4lRrIQDAlIaUUpRoFUsyaBZHQKW/Ss189fV1fZQoaAZoCWgPQwjaOGItPsX3v5SGlFKUaBVLMmgWR0Clvw9iUgSwdX2UKGgGaAloD0MIYDsYsU/gBcCUhpRSlGgVSzJoFkdApb7Gn889wHV9lChoBmgJaA9DCBSy8zY2ewnAlIaUUpRoFUsyaBZHQKXAxSqEOAl1fZQoaAZoCWgPQwgLRE/KpIbyv5SGlFKUaBVLMmgWR0ClwIqzAvcrdX2UKGgGaAloD0MI/YhfsYZL+r+UhpRSlGgVSzJoFkdApcBOldkauXV9lChoBmgJaA9DCDF8REyJJPm/lIaUUpRoFUsyaBZHQKXABRQ79yd1fZQoaAZoCWgPQwgwSPq0in76v5SGlFKUaBVLMmgWR0Clwclev6j4dX2UKGgGaAloD0MI0xOWeEDZ+7+UhpRSlGgVSzJoFkdApcGO8PFvRHV9lChoBmgJaA9DCK4pkNlZ9ADAlIaUUpRoFUsyaBZHQKXBUqvNeMR1fZQoaAZoCWgPQwgBTu/i/fj0v5SGlFKUaBVLMmgWR0ClwQkiliz+dX2UKGgGaAloD0MIVfZdEfxv9b+UhpRSlGgVSzJoFkdApcLI7cO9WnV9lChoBmgJaA9DCKJD4EigYQfAlIaUUpRoFUsyaBZHQKXCjoDgZTB1fZQoaAZoCWgPQwiUZ14Ouy8JwJSGlFKUaBVLMmgWR0ClwlJFb3XadX2UKGgGaAloD0MIrws/OJ/aCMCUhpRSlGgVSzJoFkdApcIIw7DEWXV9lChoBmgJaA9DCO8a9KW33wjAlIaUUpRoFUsyaBZHQKXD0fcvduZ1fZQoaAZoCWgPQwhLdJZZhAIAwJSGlFKUaBVLMmgWR0Clw5eEh7mddX2UKGgGaAloD0MIc4Bgjh6fAMCUhpRSlGgVSzJoFkdApcNbHn2ZiXV9lChoBmgJaA9DCNi2KLNBpgfAlIaUUpRoFUsyaBZHQKXDEauOjqR1fZQoaAZoCWgPQwhgP8QGCyfyv5SGlFKUaBVLMmgWR0ClxNi0ngHedX2UKGgGaAloD0MISG3i5H5H/7+UhpRSlGgVSzJoFkdApcSeR/3Fk3V9lChoBmgJaA9DCN0iMNY3sP+/lIaUUpRoFUsyaBZHQKXEYebutwJ1fZQoaAZoCWgPQwjhKHl1jgEDwJSGlFKUaBVLMmgWR0ClxBhdD6WPdX2UKGgGaAloD0MISx3k9WDyCMCUhpRSlGgVSzJoFkdApcX5rnDBM3V9lChoBmgJaA9DCHrGvmTj4Q/AlIaUUpRoFUsyaBZHQKXFv2/SH/N1fZQoaAZoCWgPQwhnfcoxWdz8v5SGlFKUaBVLMmgWR0ClxYQIldC3dX2UKGgGaAloD0MIBdzz/GkjAcCUhpRSlGgVSzJoFkdApcU617Y023V9lChoBmgJaA9DCLzmVZ3Vgv2/lIaUUpRoFUsyaBZHQKXHTrUsnRd1fZQoaAZoCWgPQwg8pYP1f07zv5SGlFKUaBVLMmgWR0ClxxT1TR6XdX2UKGgGaAloD0MI6BN5knSN+r+UhpRSlGgVSzJoFkdApcbYljVhC3V9lChoBmgJaA9DCGb35GGhtgPAlIaUUpRoFUsyaBZHQKXGjwnYxtZ1fZQoaAZoCWgPQwj/6QYKvNMKwJSGlFKUaBVLMmgWR0ClyFX9JjDsdX2UKGgGaAloD0MIIH2TpkHxAsCUhpRSlGgVSzJoFkdApcgbkOqeb3V9lChoBmgJaA9DCF7yP/m7lwTAlIaUUpRoFUsyaBZHQKXH31AZ88d1fZQoaAZoCWgPQwgeh8H8FfIFwJSGlFKUaBVLMmgWR0Clx5XN1QqJdX2UKGgGaAloD0MI/g+wVu2aBMCUhpRSlGgVSzJoFkdApclfbCaZyHV9lChoBmgJaA9DCLmJWppbIfu/lIaUUpRoFUsyaBZHQKXJJPE87p51fZQoaAZoCWgPQwiKr3YU5wgEwJSGlFKUaBVLMmgWR0ClyOiZOSGKdX2UKGgGaAloD0MImiMrvwymAMCUhpRSlGgVSzJoFkdApcifCQ9zO3V9lChoBmgJaA9DCDZ4X5UL1fm/lIaUUpRoFUsyaBZHQKXKgi1y/9J1fZQoaAZoCWgPQwjhDP5+MZvzv5SGlFKUaBVLMmgWR0ClykfJ/5LzdX2UKGgGaAloD0MIV2DI6laPAcCUhpRSlGgVSzJoFkdApcoLpC8e0XV9lChoBmgJaA9DCOqvV1hwf/y/lIaUUpRoFUsyaBZHQKXJwiaAnUl1fZQoaAZoCWgPQwjZsnxdhl8AwJSGlFKUaBVLMmgWR0Cly5JSJj2BdX2UKGgGaAloD0MIaf6Y1qYxD8CUhpRSlGgVSzJoFkdApctX7iyY5XV9lChoBmgJaA9DCK+196kqNALAlIaUUpRoFUsyaBZHQKXLG7sfJV91fZQoaAZoCWgPQwidD88SZHQQwJSGlFKUaBVLMmgWR0ClytIo/iYLdX2UKGgGaAloD0MIwk8cQL8v/b+UhpRSlGgVSzJoFkdApcyTtZ3cHnV9lChoBmgJaA9DCPJ376gxIQPAlIaUUpRoFUsyaBZHQKXMWUrTYul1fZQoaAZoCWgPQwg7N23GaQj+v5SGlFKUaBVLMmgWR0ClzB0IsyzpdX2UKGgGaAloD0MIe00PCkpxBMCUhpRSlGgVSzJoFkdApcvTeZXuE3V9lChoBmgJaA9DCGq932jHzfi/lIaUUpRoFUsyaBZHQKXNlh2GIsR1fZQoaAZoCWgPQwhAaahRSNIKwJSGlFKUaBVLMmgWR0ClzVu8brC4dX2UKGgGaAloD0MIRdeFH5wP/7+UhpRSlGgVSzJoFkdApc0fSKFZgXV9lChoBmgJaA9DCHS2gNB6uAjAlIaUUpRoFUsyaBZHQKXM1da+vhZ1fZQoaAZoCWgPQwhBSBYwgfsNwJSGlFKUaBVLMmgWR0Clzp2LHdXUdX2UKGgGaAloD0MIGTigpSv4C8CUhpRSlGgVSzJoFkdApc5jHbRF7XV9lChoBmgJaA9DCDF5A8x8pwLAlIaUUpRoFUsyaBZHQKXOJs1KoQ51fZQoaAZoCWgPQwiB64oZ4e38v5SGlFKUaBVLMmgWR0Clzd1Rk3CLdX2UKGgGaAloD0MIqiuf5Xnw8b+UhpRSlGgVSzJoFkdApc+o+QlrunV9lChoBmgJaA9DCM5xbhPutQHAlIaUUpRoFUsyaBZHQKXPbnPmgap1fZQoaAZoCWgPQwico46Oq5Hvv5SGlFKUaBVLMmgWR0ClzzI86mwadX2UKGgGaAloD0MIpYP1fw6z8r+UhpRSlGgVSzJoFkdApc7ophF3IXV9lChoBmgJaA9DCIXpew3Bcfa/lIaUUpRoFUsyaBZHQKXQtG9YfXB1fZQoaAZoCWgPQwjC2hg74aXyv5SGlFKUaBVLMmgWR0Cl0HolD4QCdX2UKGgGaAloD0MIKqp+pfNBEcCUhpRSlGgVSzJoFkdApdA98G9pRHV9lChoBmgJaA9DCMVwdQDEXQLAlIaUUpRoFUsyaBZHQKXP9H7xd6d1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cedfb203df7ad0b2dfefcb358c60b1acdd5ab3ea0ac809942e439bb1d9d7bed3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7c1db3cd9a21fcad9a3db297c6cdef56192596237bfb9c6b4ce49a01cacc00f
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9eb9253040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9eb9250ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678892988440153293, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAn9nsPg7w9jwDdBc/n9nsPg7w9jwDdBc/n9nsPg7w9jwDdBc/n9nsPg7w9jwDdBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3NL0vtpYR7/OjCK+Gqiuv19fcL+/Jpk8HACmv0CZij4mGzG+BXHQv0nK0z6sDH6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqf2ew+DvD2PAN0Fz/1Q/g7FouvO5uW3bqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.46259782 0.03014376 0.59161395]\n [0.46259782 0.03014376 0.59161395]\n [0.46259782 0.03014376 0.59161395]\n [0.46259782 0.03014376 0.59161395]]", "desired_goal": "[[-0.47817123 -0.7786995 -0.15874025]\n [-1.364505 -0.93895525 0.01869523]\n [-1.2968783 0.27070045 -0.17295513]\n [-1.6284491 0.4136527 -0.99238086]]", "observation": "[[ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]\n [ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]\n [ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]\n [ 0.46259782 0.03014376 0.59161395 0.00757646 0.00535716 -0.00169058]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAF6/jPXE/Zj2fCA8+rQl0PaByFL3WzVw9QtcnvZgodT31RoM+4nlovfldMb0y8fo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1111738 0.05621285 0.13968132]\n [ 0.05957954 -0.03624213 0.05390724]\n [-0.04097677 0.05985317 0.25640073]\n [-0.05675686 -0.04330251 0.12253036]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyxDHurgtAMCUhpRSlIwBbJRLMowBdJRHQKWzb2fTTfB1fZQoaAZoCWgPQwiUFcPVAdAPwJSGlFKUaBVLMmgWR0ClszT4k/r0dX2UKGgGaAloD0MI/iYUIuDwEsCUhpRSlGgVSzJoFkdApbL48p1A7nV9lChoBmgJaA9DCH6oNGJmH/K/lIaUUpRoFUsyaBZHQKWyr0JWvKV1fZQoaAZoCWgPQwi7YkZ4ezABwJSGlFKUaBVLMmgWR0CltKjHwPRRdX2UKGgGaAloD0MIHhmrzf/rAsCUhpRSlGgVSzJoFkdApbRvJJXhfnV9lChoBmgJaA9DCPxSP28qkvi/lIaUUpRoFUsyaBZHQKW0MwpON5t1fZQoaAZoCWgPQwj+nIL8bMQBwJSGlFKUaBVLMmgWR0Cls+o9C/oJdX2UKGgGaAloD0MIUvF/R1TIDMCUhpRSlGgVSzJoFkdApbW349HMEHV9lChoBmgJaA9DCB6M2CeAIg3AlIaUUpRoFUsyaBZHQKW1fYraufV1fZQoaAZoCWgPQwhQwkzbvzIGwJSGlFKUaBVLMmgWR0CltUFd1MdtdX2UKGgGaAloD0MIxeI3hZVKCsCUhpRSlGgVSzJoFkdApbT35k9U0nV9lChoBmgJaA9DCPpCyHn/fwDAlIaUUpRoFUsyaBZHQKW2zJQLux91fZQoaAZoCWgPQwiOWmH6XiMBwJSGlFKUaBVLMmgWR0CltpIqbz9TdX2UKGgGaAloD0MIaK8+Hvqu/L+UhpRSlGgVSzJoFkdApbZV5hScb3V9lChoBmgJaA9DCA4sR8hAHv2/lIaUUpRoFUsyaBZHQKW2DFrEcbR1fZQoaAZoCWgPQwgQy2YOSQ0HwJSGlFKUaBVLMmgWR0CluF2uoxYadX2UKGgGaAloD0MIbVSnA1kP9r+UhpRSlGgVSzJoFkdApbgkE5hjOXV9lChoBmgJaA9DCEiphCf0GgfAlIaUUpRoFUsyaBZHQKW36bRWtEJ1fZQoaAZoCWgPQwi1ozhHHV3/v5SGlFKUaBVLMmgWR0Clt6Esz2vjdX2UKGgGaAloD0MIiQeUTbmC8L+UhpRSlGgVSzJoFkdApboerZJ04nV9lChoBmgJaA9DCLAgzVg03QjAlIaUUpRoFUsyaBZHQKW55RUm2LJ1fZQoaAZoCWgPQwg5fqg0YoYFwJSGlFKUaBVLMmgWR0CluamrCFbndX2UKGgGaAloD0MIi6iJPh8lAcCUhpRSlGgVSzJoFkdApblhHPNVznV9lChoBmgJaA9DCCtsBrggG/C/lIaUUpRoFUsyaBZHQKW72xYaHbh1fZQoaAZoCWgPQwjrHAOy17v3v5SGlFKUaBVLMmgWR0Clu6F8ohIOdX2UKGgGaAloD0MIFVeVfVckAsCUhpRSlGgVSzJoFkdApbtmJJoTPHV9lChoBmgJaA9DCDnThO0nQxDAlIaUUpRoFUsyaBZHQKW7HerMkhR1fZQoaAZoCWgPQwgcl3FTAw36v5SGlFKUaBVLMmgWR0ClvZZnlGPQdX2UKGgGaAloD0MIb/Wc9L7x+L+UhpRSlGgVSzJoFkdApb1c6eXiSHV9lChoBmgJaA9DCAGJJlDEIvi/lIaUUpRoFUsyaBZHQKW9IXUpd8l1fZQoaAZoCWgPQwhRZoNMMrIAwJSGlFKUaBVLMmgWR0ClvNiSRr8BdX2UKGgGaAloD0MINqypLAq7+r+UhpRSlGgVSzJoFkdApb+CeiBXjnV9lChoBmgJaA9DCGSw4lRrIQDAlIaUUpRoFUsyaBZHQKW/Ss189fV1fZQoaAZoCWgPQwjaOGItPsX3v5SGlFKUaBVLMmgWR0Clvw9iUgSwdX2UKGgGaAloD0MIYDsYsU/gBcCUhpRSlGgVSzJoFkdApb7Gn889wHV9lChoBmgJaA9DCBSy8zY2ewnAlIaUUpRoFUsyaBZHQKXAxSqEOAl1fZQoaAZoCWgPQwgLRE/KpIbyv5SGlFKUaBVLMmgWR0ClwIqzAvcrdX2UKGgGaAloD0MI/YhfsYZL+r+UhpRSlGgVSzJoFkdApcBOldkauXV9lChoBmgJaA9DCDF8REyJJPm/lIaUUpRoFUsyaBZHQKXABRQ79yd1fZQoaAZoCWgPQwgwSPq0in76v5SGlFKUaBVLMmgWR0Clwclev6j4dX2UKGgGaAloD0MI0xOWeEDZ+7+UhpRSlGgVSzJoFkdApcGO8PFvRHV9lChoBmgJaA9DCK4pkNlZ9ADAlIaUUpRoFUsyaBZHQKXBUqvNeMR1fZQoaAZoCWgPQwgBTu/i/fj0v5SGlFKUaBVLMmgWR0ClwQkiliz+dX2UKGgGaAloD0MIVfZdEfxv9b+UhpRSlGgVSzJoFkdApcLI7cO9WnV9lChoBmgJaA9DCKJD4EigYQfAlIaUUpRoFUsyaBZHQKXCjoDgZTB1fZQoaAZoCWgPQwiUZ14Ouy8JwJSGlFKUaBVLMmgWR0ClwlJFb3XadX2UKGgGaAloD0MIrws/OJ/aCMCUhpRSlGgVSzJoFkdApcIIw7DEWXV9lChoBmgJaA9DCO8a9KW33wjAlIaUUpRoFUsyaBZHQKXD0fcvduZ1fZQoaAZoCWgPQwhLdJZZhAIAwJSGlFKUaBVLMmgWR0Clw5eEh7mddX2UKGgGaAloD0MIc4Bgjh6fAMCUhpRSlGgVSzJoFkdApcNbHn2ZiXV9lChoBmgJaA9DCNi2KLNBpgfAlIaUUpRoFUsyaBZHQKXDEauOjqR1fZQoaAZoCWgPQwhgP8QGCyfyv5SGlFKUaBVLMmgWR0ClxNi0ngHedX2UKGgGaAloD0MISG3i5H5H/7+UhpRSlGgVSzJoFkdApcSeR/3Fk3V9lChoBmgJaA9DCN0iMNY3sP+/lIaUUpRoFUsyaBZHQKXEYebutwJ1fZQoaAZoCWgPQwjhKHl1jgEDwJSGlFKUaBVLMmgWR0ClxBhdD6WPdX2UKGgGaAloD0MISx3k9WDyCMCUhpRSlGgVSzJoFkdApcX5rnDBM3V9lChoBmgJaA9DCHrGvmTj4Q/AlIaUUpRoFUsyaBZHQKXFv2/SH/N1fZQoaAZoCWgPQwhnfcoxWdz8v5SGlFKUaBVLMmgWR0ClxYQIldC3dX2UKGgGaAloD0MIBdzz/GkjAcCUhpRSlGgVSzJoFkdApcU617Y023V9lChoBmgJaA9DCLzmVZ3Vgv2/lIaUUpRoFUsyaBZHQKXHTrUsnRd1fZQoaAZoCWgPQwg8pYP1f07zv5SGlFKUaBVLMmgWR0ClxxT1TR6XdX2UKGgGaAloD0MI6BN5knSN+r+UhpRSlGgVSzJoFkdApcbYljVhC3V9lChoBmgJaA9DCGb35GGhtgPAlIaUUpRoFUsyaBZHQKXGjwnYxtZ1fZQoaAZoCWgPQwj/6QYKvNMKwJSGlFKUaBVLMmgWR0ClyFX9JjDsdX2UKGgGaAloD0MIIH2TpkHxAsCUhpRSlGgVSzJoFkdApcgbkOqeb3V9lChoBmgJaA9DCF7yP/m7lwTAlIaUUpRoFUsyaBZHQKXH31AZ88d1fZQoaAZoCWgPQwgeh8H8FfIFwJSGlFKUaBVLMmgWR0Clx5XN1QqJdX2UKGgGaAloD0MI/g+wVu2aBMCUhpRSlGgVSzJoFkdApclfbCaZyHV9lChoBmgJaA9DCLmJWppbIfu/lIaUUpRoFUsyaBZHQKXJJPE87p51fZQoaAZoCWgPQwiKr3YU5wgEwJSGlFKUaBVLMmgWR0ClyOiZOSGKdX2UKGgGaAloD0MImiMrvwymAMCUhpRSlGgVSzJoFkdApcifCQ9zO3V9lChoBmgJaA9DCDZ4X5UL1fm/lIaUUpRoFUsyaBZHQKXKgi1y/9J1fZQoaAZoCWgPQwjhDP5+MZvzv5SGlFKUaBVLMmgWR0ClykfJ/5LzdX2UKGgGaAloD0MIV2DI6laPAcCUhpRSlGgVSzJoFkdApcoLpC8e0XV9lChoBmgJaA9DCOqvV1hwf/y/lIaUUpRoFUsyaBZHQKXJwiaAnUl1fZQoaAZoCWgPQwjZsnxdhl8AwJSGlFKUaBVLMmgWR0Cly5JSJj2BdX2UKGgGaAloD0MIaf6Y1qYxD8CUhpRSlGgVSzJoFkdApctX7iyY5XV9lChoBmgJaA9DCK+196kqNALAlIaUUpRoFUsyaBZHQKXLG7sfJV91fZQoaAZoCWgPQwidD88SZHQQwJSGlFKUaBVLMmgWR0ClytIo/iYLdX2UKGgGaAloD0MIwk8cQL8v/b+UhpRSlGgVSzJoFkdApcyTtZ3cHnV9lChoBmgJaA9DCPJ376gxIQPAlIaUUpRoFUsyaBZHQKXMWUrTYul1fZQoaAZoCWgPQwg7N23GaQj+v5SGlFKUaBVLMmgWR0ClzB0IsyzpdX2UKGgGaAloD0MIe00PCkpxBMCUhpRSlGgVSzJoFkdApcvTeZXuE3V9lChoBmgJaA9DCGq932jHzfi/lIaUUpRoFUsyaBZHQKXNlh2GIsR1fZQoaAZoCWgPQwhAaahRSNIKwJSGlFKUaBVLMmgWR0ClzVu8brC4dX2UKGgGaAloD0MIRdeFH5wP/7+UhpRSlGgVSzJoFkdApc0fSKFZgXV9lChoBmgJaA9DCHS2gNB6uAjAlIaUUpRoFUsyaBZHQKXM1da+vhZ1fZQoaAZoCWgPQwhBSBYwgfsNwJSGlFKUaBVLMmgWR0Clzp2LHdXUdX2UKGgGaAloD0MIGTigpSv4C8CUhpRSlGgVSzJoFkdApc5jHbRF7XV9lChoBmgJaA9DCDF5A8x8pwLAlIaUUpRoFUsyaBZHQKXOJs1KoQ51fZQoaAZoCWgPQwiB64oZ4e38v5SGlFKUaBVLMmgWR0Clzd1Rk3CLdX2UKGgGaAloD0MIqiuf5Xnw8b+UhpRSlGgVSzJoFkdApc+o+QlrunV9lChoBmgJaA9DCM5xbhPutQHAlIaUUpRoFUsyaBZHQKXPbnPmgap1fZQoaAZoCWgPQwico46Oq5Hvv5SGlFKUaBVLMmgWR0ClzzI86mwadX2UKGgGaAloD0MIpYP1fw6z8r+UhpRSlGgVSzJoFkdApc7ophF3IXV9lChoBmgJaA9DCIXpew3Bcfa/lIaUUpRoFUsyaBZHQKXQtG9YfXB1fZQoaAZoCWgPQwjC2hg74aXyv5SGlFKUaBVLMmgWR0Cl0HolD4QCdX2UKGgGaAloD0MIKqp+pfNBEcCUhpRSlGgVSzJoFkdApdA98G9pRHV9lChoBmgJaA9DCMVwdQDEXQLAlIaUUpRoFUsyaBZHQKXP9H7xd6d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (398 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.465659911604598, "std_reward": 0.7012364370568245, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T15:57:33.031325"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb734ab4767c2379b13debb6a716dcef965a2649f21e96994bfea6deb2c842b6
3
+ size 3056