FlipFlopsNSocks commited on
Commit
29bedc1
1 Parent(s): 4a08cd1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md CHANGED
@@ -1,3 +1,102 @@
1
  ---
2
  license: wtfpl
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: wtfpl
3
  ---
4
+ from transformers import pipeline
5
+ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
6
+ model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
7
+ classifier = pipeline("ner", model=model, tokenizer=tokenizer)
8
+ classifier("Alya told Jasmine that Andrew could pay with cash..")
9
+ [{'end': 2,
10
+ 'entity': 'I-PER',
11
+ 'index': 1,
12
+ 'score': 0.9997861,
13
+ 'start': 0,
14
+ 'word': '▁Al'},
15
+ {'end': 4,
16
+ 'entity': 'I-PER',
17
+ 'index': 2,
18
+ 'score': 0.9998591,
19
+ 'start': 2,
20
+ 'word': 'ya'},
21
+ {'end': 16,
22
+ 'entity': 'I-PER',
23
+ 'index': 4,
24
+ 'score': 0.99995816,
25
+ 'start': 10,
26
+ 'word': '▁Jasmin'},
27
+ {'end': 17,
28
+ 'entity': 'I-PER',
29
+ 'index': 5,
30
+ 'score': 0.9999584,
31
+ 'start': 16,
32
+ 'word': 'e'},
33
+ {'end': 29,
34
+ 'entity': 'I-PER',
35
+ 'index': 7,
36
+ 'score': 0.99998057,
37
+ 'start': 23,
38
+ 'word': '▁Andrew'}]
39
+
40
+ Recommendations
41
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
42
+
43
+ Training
44
+ See the following resources for training data and training procedure details:
45
+
46
+ XLM-RoBERTa-large model card
47
+ CoNLL-2003 data card
48
+ Associated paper
49
+ Evaluation
50
+ See the associated paper for evaluation details.
51
+
52
+ Environmental Impact
53
+ Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
54
+
55
+ Hardware Type: 500 32GB Nvidia V100 GPUs (from the associated paper)
56
+ Hours used: More information needed
57
+ Cloud Provider: More information needed
58
+ Compute Region: More information needed
59
+ Carbon Emitted: More information needed
60
+ Technical Specifications
61
+ See the associated paper for further details.
62
+
63
+ Citation
64
+ BibTeX:
65
+
66
+ @article{conneau2019unsupervised,
67
+ title={Unsupervised Cross-lingual Representation Learning at Scale},
68
+ author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
69
+ journal={arXiv preprint arXiv:1911.02116},
70
+ year={2019}
71
+ }
72
+
73
+ APA:
74
+
75
+ Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
76
+ Model Card Authors
77
+ This model card was written by the team at Hugging Face.
78
+
79
+ How to Get Started with the Model
80
+ Use the code below to get started with the model. You can use this model directly within a pipeline for NER.
81
+
82
+ Click to expand
83
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
84
+ from transformers import pipeline
85
+ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
86
+ model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
87
+ classifier = pipeline("ner", model=model, tokenizer=tokenizer)
88
+ classifier("Hello I'm Omar and I live in Zürich.")
89
+
90
+ [{'end': 14,
91
+ 'entity': 'I-PER',
92
+ 'index': 5,
93
+ 'score': 0.9999175,
94
+ 'start': 10,
95
+ 'word': '▁Omar'},
96
+ {'end': 35,
97
+ 'entity': 'I-LOC',
98
+ 'index': 10,
99
+ 'score': 0.9999906,
100
+ 'start': 29,
101
+ 'word': '▁Zürich'}]
102
+