File size: 14,316 Bytes
30b1b43
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f14a1b9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f14a1ba30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f14a1bac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f14a1bb50>", "_build": "<function ActorCriticPolicy._build at 0x7f0f14a1bbe0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0f14a1bc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0f14a1bd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f14a1bd90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0f14a1be20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f14a1beb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f14a1bf40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f14a28040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f14a2c100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685417211935712430, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ8Kqz6E5rw+ey7+Pskuyj8H9Wy/5mpoP9wF5T6srFC/dBkkP0qVrz5xgIw/zQwkPoYajL9HYBLAkQEaPkKBB7+wFxs+5ga8v77cIz9G+SM/nmlCv1t51Dzop1S/Ai++vNo5Oj/M6fm/MW38PsZJu7+OFSg/DQJrv3BLqj4wog8/zA3+P1yoxr4ADvM+TT5Cv3vVJT/pyY6+BRIaP/UUhb8uGpa/oP54P7Px5Lw0bILA9vXEv/QUUz9QGws/+QCHP+UTRUBtZ7W/Y+gFvtOHxz9Q9a+/zOn5vzFt/D7GSbu/T3ZuvjfQhT72YAg/SE2GP4CWWr9hHhq/0koHP1Rskz9Z1SY/bBc9PoB2Ez6qZEo8msy7vzPp+L/QGTk+BpQnQDIMBz+awaW/1MRIvmJ7c76Ddye/qYvKPqHAQr8oCc0+2jk6P8zp+b8xbfw+xkm7v6mVKT+N10O/+pXYPsvOGT+/CZ4/BhoVvyW7bb7dYoe/+hbOPlnwDb/bHek+ffMwwLKfYr/tN2c/0mRSPionKr4by3A8Q0TBP95ChT5TDDXA2gqEvnW/Ib+FWHE+aDIiQFD1r7/M6fm/MW38PsZJu7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAALHS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+J+2PQAAAADJLPO/AAAAAPb3zb0AAAAA+Ij+PwAAAABgnTA9AAAAAOCd4T8AAAAA8seEPAAAAACWifG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYZFtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDWm9z0AAAAAphrnvwAAAACiMA6+AAAAAMFV9z8AAAAARGcAPQAAAAC7OPs/AAAAANTFv70AAAAAQvXmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEYtzrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRi489AAAAAK+E9L8AAAAAwj8BPgAAAAA5y+M/AAAAABZeEb4AAAAAA+oAQAAAAAC5xpW9AAAAALhi/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACa6M2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm+8KvgAAAACSzOm/AAAAAMwSdD0AAAAAjmkAQAAAAACRr/M8AAAAADHp5T8AAAAAGfm2PAAAAADxpADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfMNDSgGr2MAWyUTegDjAF0lEdAqfBFW4mTknV9lChoBkdAmsG1ajesP2gHTegDaAhHQKnxmzE74i51fZQoaAZHQJuAZSIgvDhoB03oA2gIR0Cp8fBC+lCUdX2UKGgGR0CaOB/WlMyraAdN6ANoCEdAqfhF54W1t3V9lChoBkdAlx3hLf1pTWgHTegDaAhHQKn8iD+R5kd1fZQoaAZHQJrEz9XLeRBoB03oA2gIR0Cp/ndvCMxXdX2UKGgGR0CYVI2ZiNKiaAdN6ANoCEdAqf7uzKLbYnV9lChoBkdAkkyWzWwu/WgHTegDaAhHQKoIEqlP8AJ1fZQoaAZHQJukfEn9ehRoB03oA2gIR0CqDEIeHSF5dX2UKGgGR0CbGdZIxxkvaAdN6ANoCEdAqg2Isqaw2XV9lChoBkdAmXNeumrKeWgHTegDaAhHQKoN17m+0w91fZQoaAZHQJXAAhY/3WZoB03oA2gIR0CqFAsLF4s3dX2UKGgGR0CbOeGwA2hqaAdN6ANoCEdAqhhX029+PXV9lChoBkdAnHwtwFTvRmgHTegDaAhHQKoZmmXPZ7J1fZQoaAZHQJtnThKlHjJoB03oA2gIR0CqGej3mFJydX2UKGgGR0CdzL7JGOMmaAdN6ANoCEdAqiIp8twrD3V9lChoBkdAnoH5okAxSGgHTegDaAhHQKon0Tjebd91fZQoaAZHQJ3nRWcSXdFoB03oA2gIR0CqKRsRYigTdX2UKGgGR0CaFSsnRb8naAdN6ANoCEdAqilsHjZL7HV9lChoBkdAnEHf2kBS1mgHTegDaAhHQKovnY5ksjF1fZQoaAZHQJ76R41P3ztoB03oA2gIR0CqM8pbt7a7dX2UKGgGR0Ccy46e5Fw2aAdN6ANoCEdAqjUQmeDnNnV9lChoBkdAnrgNWIXTE2gHTegDaAhHQKo1XoMa0hN1fZQoaAZHQJ2tM8gZCOZoB03oA2gIR0CqPCEyk9EDdX2UKGgGR0Cbi+ClJpWWaAdN6ANoCEdAqkKrzAeq73V9lChoBkdAmSOnL7oB72gHTegDaAhHQKpEylRgqmV1fZQoaAZHQJq9Uu7HyVhoB03oA2gIR0CqRVI8IRh+dX2UKGgGR0CbqBZqEeySaAdN6ANoCEdAqkusJ0GNaXV9lChoBkdAmU2/FzdUKmgHTegDaAhHQKpP8n4wh4d1fZQoaAZHQJtBBppN9IBoB03oA2gIR0CqUTzUy57PdX2UKGgGR0CbWkG34Kx+aAdN6ANoCEdAqlGTgVGkOHV9lChoBkdAmNh/O2RaHWgHTegDaAhHQKpX9n0TURZ1fZQoaAZHQJzTxvbXYlJoB03oA2gIR0CqXYjzZpSKdX2UKGgGR0CaDQfYzzmPaAdN6ANoCEdAql+MDKYAsHV9lChoBkdAixYiwB5ooWgHTegDaAhHQKpgFdpItlJ1fZQoaAZHQJw/x08vEjxoB03oA2gIR0CqZ8yAQQMAdX2UKGgGR0CXJPNDMNc4aAdN6ANoCEdAqmwIP3BYWHV9lChoBkdAm6CwHiWE9WgHTegDaAhHQKptYhA4XGh1fZQoaAZHQJJyPMdLg4xoB03oA2gIR0CqbbNpmEoOdX2UKGgGR0CbE9MAFPi2aAdN6ANoCEdAqnPcQkHD8HV9lChoBkdAm90/ra/RFGgHTegDaAhHQKp4LkvK2a51fZQoaAZHQJrg6SX+l0poB03oA2gIR0CqehGD15B1dX2UKGgGR0CaNaZ/kNnXaAdN6ANoCEdAqnqSVObiInV9lChoBkdAid9UvGp++mgHTegDaAhHQKqD8aOPvKF1fZQoaAZHQJphTGecx0xoB03oA2gIR0CqiDVrqMWHdX2UKGgGR0CbX2/LTx5LaAdN6ANoCEdAqomBesxO+XV9lChoBkdAmuPL0voNeGgHTegDaAhHQKqJ0tpVS4x1fZQoaAZHQJrMmC8OCoVoB03oA2gIR0CqkCHMt9QXdX2UKGgGR0CSrG7BwdbQaAdN6ANoCEdAqpR0eXAuZnV9lChoBkdAlly3RCx/u2gHTegDaAhHQKqVwji4rjJ1fZQoaAZHQJlcl+PRzBBoB03oA2gIR0CqlhKPXCj2dX2UKGgGR0CY+mpqREF4aAdN6ANoCEdAqp7L+3pfQnV9lChoBkdAnGv56dDpkmgHTegDaAhHQKqkNoOhCdB1fZQoaAZHQI2iX1DjR2NoB03oA2gIR0CqpXqtga3rdX2UKGgGR0CdgadKujh2aAdN6ANoCEdAqqXLu6VdHHV9lChoBkdAmGM3s5XEImgHTegDaAhHQKqr/E2pAD91fZQoaAZHQJ3aloqTbFloB03oA2gIR0CqsDT3RG+cdX2UKGgGR0Ca4PRxtHhCaAdN6ANoCEdAqrF6nDR+jXV9lChoBkdAmu1Zs41gpmgHTegDaAhHQKqxzSlWOp91fZQoaAZHQJ2Qo0k4WDZoB03oA2gIR0CquPUmlZX/dX2UKGgGR0CdW1WH1vl2aAdN6ANoCEdAqsCtqk/KQ3V9lChoBkdAncxOyNXHR2gHTegDaAhHQKrDGF9KEnN1fZQoaAZHQJj7LlIVdopoB03oA2gIR0Cqw5M0gr6MdX2UKGgGR0CdHkkoWpIdaAdN6ANoCEdAqsv9AC4jKXV9lChoBkdAmdXgMH8jzWgHTegDaAhHQKrQU5yU9p11fZQoaAZHQJ4rZXlr/KhoB03oA2gIR0Cq0aZDArQPdX2UKGgGR0CdrJWZqmCRaAdN6ANoCEdAqtH4Yzi0fHV9lChoBkdAnusIkVvddmgHTegDaAhHQKrZLoPkJa91fZQoaAZHQJ60SuieumtoB03oA2gIR0Cq37IXj2i+dX2UKGgGR0CcCzxaPjn3aAdN6ANoCEdAquFwNmUW23V9lChoBkdAnmDl+NLlFWgHTegDaAhHQKrhvwyZa3Z1fZQoaAZHQJz2Ey44Ia9oB03oA2gIR0Cq59PNFBppdX2UKGgGR0CcaEunMt9QaAdN6ANoCEdAquwQb+98JHV9lChoBkdAm/UdVzZHu2gHTegDaAhHQKrtWkl/pdN1fZQoaAZHQJlEzsIE8q5oB03oA2gIR0Cq7akUTL4fdX2UKGgGR0CdJ4RDkU9IaAdN6ANoCEdAqvPvZGrjpHV9lChoBkdAl8jjArQPZ2gHTegDaAhHQKr5pe8f3ex1fZQoaAZHQJsoswoLG71oB03oA2gIR0Cq+6da2WpqdX2UKGgGR0CZBmAZsKsuaAdN6ANoCEdAqvwqMWGh3HV9lChoBkdAnrTOtbLU1GgHTegDaAhHQKsDms3AEdN1fZQoaAZHQJpkVuJk5IZoB03oA2gIR0CrB8SDqW1MdX2UKGgGR0CdvLmvGIbgaAdN6ANoCEdAqwkSP+4smXV9lChoBkdAlvJCTlkpZ2gHTegDaAhHQKsJYyLQ5WB1fZQoaAZHQJmoHS/j81poB03oA2gIR0CrD53MQmNSdX2UKGgGR0CaUFZ3LV4HaAdN6ANoCEdAqxO20qpcX3V9lChoBkdAnX/bupjtomgHTegDaAhHQKsVlkGzKLd1fZQoaAZHQJ67bKISDh9oB03oA2gIR0CrFgsn7YTTdX2UKGgGR0Cd33s2eg+RaAdN6ANoCEdAqx8+vMbFTHV9lChoBkdAd5vmSQo1DWgHTegDaAhHQKsjarGR3eN1fZQoaAZHQJdfwg1WKdhoB03oA2gIR0CrJK3M6ij+dX2UKGgGR0CeLlL1EmY0aAdN6ANoCEdAqyT+HJtBOnV9lChoBkdAmdzI0dilSGgHTegDaAhHQKsrBA31jAl1fZQoaAZHQJlPA7jkuHxoB03oA2gIR0CrL0UqhDgJdX2UKGgGR0Ce45E5yU9qaAdN6ANoCEdAqzCBxkupTHV9lChoBkdAnWgLIT4+KWgHTegDaAhHQKsw0FSKm9B1fZQoaAZHwCBXrdFfAsVoB0uPaAhHQKsw7ovBacJ1fZQoaAZHQJ3s75eqrBFoB03oA2gIR0CrONwCbMHKdX2UKGgGR0Cd+gR+SbH7aAdN6ANoCEdAqz+yxqwhXHV9lChoBkdAn5ylPnB+F2gHTegDaAhHQKtAAOOsDGN1fZQoaAZHQJkWOkUKzAxoB03oA2gIR0CrQBtQ0oBrdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}