Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +15 -15
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.27 +/- 0.09
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eff0e418c5cf92113950ea9000555a59343817ec5dc5245e97149db0e7249f1d
|
3 |
+
size 108164
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -21,24 +21,24 @@
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
-
":serialized:": "
|
39 |
-
"achieved_goal": "[[
|
40 |
-
"desired_goal": "[[-
|
41 |
-
"observation": "[[ 0.
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -46,9 +46,9 @@
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
-
"desired_goal": "[[
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
@@ -58,13 +58,13 @@
|
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
-
"_n_updates":
|
68 |
"n_steps": 5,
|
69 |
"gamma": 0.99,
|
70 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5d185a4d0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe5d1853580>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 1000000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1685796801347186462,
|
30 |
+
"learning_rate": 0.0005,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACzxjPo7q7TzQERU/CzxjPo7q7TzQERU/CzxjPo7q7TzQERU/CzxjPo7q7TzQERU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6YprPyYHfL/2tqm/X0Z4P0trYL4Oois/TBZ5PnZvF78mPdk/FfGAP0FAqL5AdHW+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAALPGM+jurtPNARFT8CB+c8ZU+kuuGVCT0LPGM+jurtPNARFT8CB+c8ZU+kuuGVCT0LPGM+jurtPNARFT8CB+c8ZU+kuuGVCT0LPGM+jurtPNARFT8CB+c8ZU+kuuGVCT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.22190873 0.02904251 0.58230305]\n [0.22190873 0.02904251 0.58230305]\n [0.22190873 0.02904251 0.58230305]\n [0.22190873 0.02904251 0.58230305]]",
|
40 |
+
"desired_goal": "[[ 0.92008835 -0.9844841 -1.325896 ]\n [ 0.9698238 -0.21915929 0.6704415 ]\n [ 0.24324912 -0.5915445 1.6971786 ]\n [ 1.0073572 -0.32861522 -0.23970127]]",
|
41 |
+
"observation": "[[ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]\n [ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]\n [ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]\n [ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhP+KPXzzez2IfUs9jp/JPFhMUD3MB3M9dRtKPa257L1sn389F3EmPW6gzb3rqiQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.06787017 0.0615115 0.04968026]\n [ 0.02461221 0.05085406 0.05933361]\n [ 0.04934259 -0.11558852 0.0624079 ]\n [ 0.04063519 -0.10040365 0.16080825]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
|
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwJXs2AjE37+UhpRSlIwBbJRLMowBdJRHQKm/hWEsasJ1fZQoaAZoCWgPQwgeUDblCm/lv5SGlFKUaBVLMmgWR0CpvzFEiMYNdX2UKGgGaAloD0MI1jcwuVFk5b+UhpRSlGgVSzJoFkdAqb7eOuJUHnV9lChoBmgJaA9DCKqezD/6JuK/lIaUUpRoFUsyaBZHQKm+hzLfUF11fZQoaAZoCWgPQwjumLoru6Dxv5SGlFKUaBVLMmgWR0CpwPLi2lVMdX2UKGgGaAloD0MIhEVFnE4y47+UhpRSlGgVSzJoFkdAqcCexdIGyHV9lChoBmgJaA9DCKs/wjBgydq/lIaUUpRoFUsyaBZHQKnATAOavzR1fZQoaAZoCWgPQwgYB5eOOc/fv5SGlFKUaBVLMmgWR0Cpv/WQGOdYdX2UKGgGaAloD0MIogp/hjdr1r+UhpRSlGgVSzJoFkdAqcIgqVhTfnV9lChoBmgJaA9DCPncCfZf5+S/lIaUUpRoFUsyaBZHQKnBzJkGzKN1fZQoaAZoCWgPQwgIILWJk/vxv5SGlFKUaBVLMmgWR0CpwXmois4ldX2UKGgGaAloD0MIIvyLoDGT6b+UhpRSlGgVSzJoFkdAqcEioybhFXV9lChoBmgJaA9DCLsoeuBjMOC/lIaUUpRoFUsyaBZHQKnDOeHzpX91fZQoaAZoCWgPQwgB9tGpK5/iv5SGlFKUaBVLMmgWR0CpwuWoNutPdX2UKGgGaAloD0MI1GGFWz4S4b+UhpRSlGgVSzJoFkdAqcKSqXF98nV9lChoBmgJaA9DCKAzaVN1j+u/lIaUUpRoFUsyaBZHQKnCO3++/QB1fZQoaAZoCWgPQwiVmj3QCoznv5SGlFKUaBVLMmgWR0CpxJcox59mdX2UKGgGaAloD0MI2NglqrcG67+UhpRSlGgVSzJoFkdAqcRDFId2gXV9lChoBmgJaA9DCGtgqwSLQ+e/lIaUUpRoFUsyaBZHQKnD8DK5kLB1fZQoaAZoCWgPQwjqPgCpTRziv5SGlFKUaBVLMmgWR0Cpw5khaC+UdX2UKGgGaAloD0MIZYnOMotQ2b+UhpRSlGgVSzJoFkdAqcXWkgwGnnV9lChoBmgJaA9DCJMCC2DKQOu/lIaUUpRoFUsyaBZHQKnFg5jH4oJ1fZQoaAZoCWgPQwhVTntKzgnkv5SGlFKUaBVLMmgWR0CpxTHYHxBmdX2UKGgGaAloD0MIhh4xem6h6r+UhpRSlGgVSzJoFkdAqcTawY+B6XV9lChoBmgJaA9DCIGv6NZr+um/lIaUUpRoFUsyaBZHQKnG/yBkI5Z1fZQoaAZoCWgPQwi6wOWxZmTcv5SGlFKUaBVLMmgWR0CpxqtH6MzedX2UKGgGaAloD0MIvth78UX75b+UhpRSlGgVSzJoFkdAqcZY5HVf/nV9lChoBmgJaA9DCKinj8Af/uS/lIaUUpRoFUsyaBZHQKnGAn6VMVV1fZQoaAZoCWgPQwgxtDo5Q3Hpv5SGlFKUaBVLMmgWR0CpyC7kn1FpdX2UKGgGaAloD0MICTNt/8pK77+UhpRSlGgVSzJoFkdAqcfa4FzMinV9lChoBmgJaA9DCMJOsWoQZua/lIaUUpRoFUsyaBZHQKnHiA80UGp1fZQoaAZoCWgPQwgLXvQVpJnmv5SGlFKUaBVLMmgWR0CpxzEgntv5dX2UKGgGaAloD0MIsWt7uyW56r+UhpRSlGgVSzJoFkdAqcljaXa8H3V9lChoBmgJaA9DCHDurx73reO/lIaUUpRoFUsyaBZHQKnJD225QP91fZQoaAZoCWgPQwhlw5rKojDpv5SGlFKUaBVLMmgWR0CpyLy/sVtXdX2UKGgGaAloD0MIcEBLV7AN4b+UhpRSlGgVSzJoFkdAqchmKyfL93V9lChoBmgJaA9DCETAIVSpWem/lIaUUpRoFUsyaBZHQKnKmNgjQiR1fZQoaAZoCWgPQwghXAGFevrtv5SGlFKUaBVLMmgWR0CpykSuZCv6dX2UKGgGaAloD0MIe9tMhXgk0L+UhpRSlGgVSzJoFkdAqcnxwfhddHV9lChoBmgJaA9DCMVTjzS4reW/lIaUUpRoFUsyaBZHQKnJmqebutx1fZQoaAZoCWgPQwgGvqJbr+nZv5SGlFKUaBVLMmgWR0Cpy7od2gWadX2UKGgGaAloD0MIH0lJD0Mr7L+UhpRSlGgVSzJoFkdAqctl+G47R3V9lChoBmgJaA9DCIQpyqXxC+u/lIaUUpRoFUsyaBZHQKnLEyrPt2N1fZQoaAZoCWgPQwjRdHYyOErjv5SGlFKUaBVLMmgWR0CpyrwmVqvedX2UKGgGaAloD0MI+BvtuOH36b+UhpRSlGgVSzJoFkdAqczefGuLaXV9lChoBmgJaA9DCB2qKck6HOu/lIaUUpRoFUsyaBZHQKnMil5WzWx1fZQoaAZoCWgPQwgEqRQ7Ggfmv5SGlFKUaBVLMmgWR0CpzDdpZfUndX2UKGgGaAloD0MIDag3o+Yr5b+UhpRSlGgVSzJoFkdAqcvgZZSvT3V9lChoBmgJaA9DCKAVGLK6VeK/lIaUUpRoFUsyaBZHQKnOB3fyf+V1fZQoaAZoCWgPQwhXW7G/7J7lv5SGlFKUaBVLMmgWR0CpzbU8mrsCdX2UKGgGaAloD0MIlugsswhF4L+UhpRSlGgVSzJoFkdAqc1kadc0L3V9lChoBmgJaA9DCEfH1ciutOS/lIaUUpRoFUsyaBZHQKnNDjMFEAp1fZQoaAZoCWgPQwjECOHRxhHav5SGlFKUaBVLMmgWR0Cpz1Oc+aBqdX2UKGgGaAloD0MIOnR63o0F4b+UhpRSlGgVSzJoFkdAqc7/jsD4g3V9lChoBmgJaA9DCK7VHvZCAe+/lIaUUpRoFUsyaBZHQKnOrW912aF1fZQoaAZoCWgPQwi/RSdLrffhv5SGlFKUaBVLMmgWR0CpzlZZKWcCdX2UKGgGaAloD0MIg2itaHMc4b+UhpRSlGgVSzJoFkdAqdCWYnfEXXV9lChoBmgJaA9DCKJfWz/95+q/lIaUUpRoFUsyaBZHQKnQQjyFwkx1fZQoaAZoCWgPQwgtzEI7p1nXv5SGlFKUaBVLMmgWR0Cpz+86eXiSdX2UKGgGaAloD0MIT1q4rMLm47+UhpRSlGgVSzJoFkdAqc+YFmnO0XV9lChoBmgJaA9DCP+xEB0CR96/lIaUUpRoFUsyaBZHQKnR35NXYDl1fZQoaAZoCWgPQwg2lUVhF0Xqv5SGlFKUaBVLMmgWR0Cp0YwkHD77dX2UKGgGaAloD0MIwHgGDf0T4L+UhpRSlGgVSzJoFkdAqdE5WxQizXV9lChoBmgJaA9DCCP2CaAYWd+/lIaUUpRoFUsyaBZHQKnQ4rZrYXh1fZQoaAZoCWgPQwiVRzfCoqLkv5SGlFKUaBVLMmgWR0Cp0+1pTMq0dX2UKGgGaAloD0MIDJQUWADT4L+UhpRSlGgVSzJoFkdAqdOaLyc0+HV9lChoBmgJaA9DCD/9Z82PP+W/lIaUUpRoFUsyaBZHQKnTSE0zj3p1fZQoaAZoCWgPQwilMO9xpgnuv5SGlFKUaBVLMmgWR0Cp0vNvGZNPdX2UKGgGaAloD0MISdv4E5UN07+UhpRSlGgVSzJoFkdAqdXf9P1tf3V9lChoBmgJaA9DCMJQhxVu+dC/lIaUUpRoFUsyaBZHQKnVjOZb6gx1fZQoaAZoCWgPQwiu1onL8Qrlv5SGlFKUaBVLMmgWR0Cp1TsTWXkYdX2UKGgGaAloD0MItOcyNQne3b+UhpRSlGgVSzJoFkdAqdTlGgBcRnV9lChoBmgJaA9DCIJwBRTq6dK/lIaUUpRoFUsyaBZHQKnX6Kqn3td1fZQoaAZoCWgPQwidLouJzcfHv5SGlFKUaBVLMmgWR0Cp15XBYV7AdX2UKGgGaAloD0MIqio0EMtm2L+UhpRSlGgVSzJoFkdAqddD7ALy+nV9lChoBmgJaA9DCD4kfO9v0N6/lIaUUpRoFUsyaBZHQKnW7eYUnG91fZQoaAZoCWgPQwjzHmeasP3hv5SGlFKUaBVLMmgWR0Cp2fk1EVnFdX2UKGgGaAloD0MIc2n8witJ0b+UhpRSlGgVSzJoFkdAqdmmMyad+XV9lChoBmgJaA9DCO4m+KbpM+C/lIaUUpRoFUsyaBZHQKnZVLuhK151fZQoaAZoCWgPQwjcZFQZxt3Mv5SGlFKUaBVLMmgWR0Cp2P7ah6BzdX2UKGgGaAloD0MI4syv5gDB07+UhpRSlGgVSzJoFkdAqdwqX0Gu93V9lChoBmgJaA9DCBUcXhCRGuG/lIaUUpRoFUsyaBZHQKnb12nKnvV1fZQoaAZoCWgPQwiOrPwyGCPav5SGlFKUaBVLMmgWR0Cp24YLLIPtdX2UKGgGaAloD0MI/rW8cr1t1b+UhpRSlGgVSzJoFkdAqdswLiMo+nV9lChoBmgJaA9DCEH0pExq6OK/lIaUUpRoFUsyaBZHQKneQzMzMzN1fZQoaAZoCWgPQwhUi4hi8gbYv5SGlFKUaBVLMmgWR0Cp3fAFPi1idX2UKGgGaAloD0MI0bAYda095L+UhpRSlGgVSzJoFkdAqd2eITGo73V9lChoBmgJaA9DCEIj2Lj+Xem/lIaUUpRoFUsyaBZHQKndR+pfhMt1fZQoaAZoCWgPQwiLOJ1kq8vjv5SGlFKUaBVLMmgWR0Cp36WoWHk+dX2UKGgGaAloD0MIUvLqHAMy6L+UhpRSlGgVSzJoFkdAqd9RhWo3rHV9lChoBmgJaA9DCELpCyHnfeK/lIaUUpRoFUsyaBZHQKne/n0TURZ1fZQoaAZoCWgPQwh+/nvw2qXpv5SGlFKUaBVLMmgWR0Cp3qdMK1G9dX2UKGgGaAloD0MI5zi3CffK2b+UhpRSlGgVSzJoFkdAqeDN6qsEJXV9lChoBmgJaA9DCJ595UF6itW/lIaUUpRoFUsyaBZHQKngebXHzYp1fZQoaAZoCWgPQwil2xK54Azfv5SGlFKUaBVLMmgWR0Cp4CbSZ0CBdX2UKGgGaAloD0MI+IxEaAQb4L+UhpRSlGgVSzJoFkdAqd/Pp6hQFnV9lChoBmgJaA9DCK9eRUYHJNC/lIaUUpRoFUsyaBZHQKnh8BwuM/B1fZQoaAZoCWgPQwhvfy4aMh7Lv5SGlFKUaBVLMmgWR0Cp4Zv5gw49dX2UKGgGaAloD0MI2ht8YTJV27+UhpRSlGgVSzJoFkdAqeFJGpda+3V9lChoBmgJaA9DCOLplbIMccy/lIaUUpRoFUsyaBZHQKng8eyzHCJ1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 50000,
|
68 |
"n_steps": 5,
|
69 |
"gamma": 0.99,
|
70 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:380288ab0888044294f09f07d80e1cb9116aeba0ad0fd176ef3925cdcbb48cf1
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1eafc0766d1f8989b1a9db237b73ee123479424829a8ae542b5b4329cac3115
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f59242afd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f59242bcd00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685596461930802571, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9Nfb9If8uShZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApjyZPsgwCL08ofs+pjyZPsgwCL08ofs+pjyZPsgwCL08ofs+pjyZPsgwCL08ofs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/pqNv3/KcL8HWGc/1vCVvzBWjz4ZRq+/tpicP4Q/Pj98IIq/lj3GPzodI7/yXO0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACmPJk+yDAIvTyh+z5dgni8m0psurJ8KrymPJk+yDAIvTyh+z5dgni8m0psurJ8KrymPJk+yDAIvTyh+z5dgni8m0psurJ8KrymPJk+yDAIvTyh+z5dgni8m0psurJ8KryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.29929084 -0.03324965 0.4914645 ]\n [ 0.29929084 -0.03324965 0.4914645 ]\n [ 0.29929084 -0.03324965 0.4914645 ]\n [ 0.29929084 -0.03324965 0.4914645 ]]", "desired_goal": "[[-1.1062925 -0.94058985 0.90368694]\n [-1.1714122 0.27995443 -1.3693267 ]\n [ 1.2234104 0.7431567 -1.0791163 ]\n [ 1.5487545 -0.6371647 0.46359974]]", "observation": "[[ 0.29929084 -0.03324965 0.4914645 -0.0151678 -0.00090138 -0.01040571]\n [ 0.29929084 -0.03324965 0.4914645 -0.0151678 -0.00090138 -0.01040571]\n [ 0.29929084 -0.03324965 0.4914645 -0.0151678 -0.00090138 -0.01040571]\n [ 0.29929084 -0.03324965 0.4914645 -0.0151678 -0.00090138 -0.01040571]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEXNMvYuLyj1WwY4+z1jnOgaWrD195hg+mG2aPb092L3aezE9Fn4svbtwFr5kKAA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04991442 0.09889897 0.2788188 ]\n [ 0.00176504 0.08427052 0.14931674]\n [ 0.07540435 -0.10558651 0.043331 ]\n [-0.04211243 -0.14691441 0.03128852]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xrYKsGCBcCUhpRSlIwBbJRLMowBdJRHQLbwyXHim2t1fZQoaAZoCWgPQwicqKW5FcIHwJSGlFKUaBVLMmgWR0C28KvuG9HudX2UKGgGaAloD0MIT0ATYcPTAsCUhpRSlGgVSzJoFkdAtvCOIFeOXHV9lChoBmgJaA9DCEpCIm3jrwbAlIaUUpRoFUsyaBZHQLbwcIToMa11fZQoaAZoCWgPQwie76fGS1cMwJSGlFKUaBVLMmgWR0C28Uel41P4dX2UKGgGaAloD0MIDOnwEMavDcCUhpRSlGgVSzJoFkdAtvEqJrLyMHV9lChoBmgJaA9DCB9LH7qgXhPAlIaUUpRoFUsyaBZHQLbxDDCgsbx1fZQoaAZoCWgPQwiFC3kENxIAwJSGlFKUaBVLMmgWR0C28O7Kq4pddX2UKGgGaAloD0MIPlkxXB0ADsCUhpRSlGgVSzJoFkdAtvG/sUqQR3V9lChoBmgJaA9DCNgrLLgfsArAlIaUUpRoFUsyaBZHQLbxojT8YQ91fZQoaAZoCWgPQwh1OSUgJsELwJSGlFKUaBVLMmgWR0C28YRCY1HfdX2UKGgGaAloD0MIWRZM/FG0BsCUhpRSlGgVSzJoFkdAtvFmqxTsIHV9lChoBmgJaA9DCP8j06HTUwjAlIaUUpRoFUsyaBZHQLbyOrlNlAh1fZQoaAZoCWgPQwhyFCAKZqwFwJSGlFKUaBVLMmgWR0C28h1UIcBEdX2UKGgGaAloD0MIwxGkUuxYEMCUhpRSlGgVSzJoFkdAtvH/UnXumnV9lChoBmgJaA9DCDoGZK93PwvAlIaUUpRoFUsyaBZHQLbx4br1M/R1fZQoaAZoCWgPQwibHam+8ysHwJSGlFKUaBVLMmgWR0C28sHPRiPRdX2UKGgGaAloD0MIEHnL1Y/tCcCUhpRSlGgVSzJoFkdAtvKkfr8iwHV9lChoBmgJaA9DCDTbFfpg+QXAlIaUUpRoFUsyaBZHQLbyhrWy1NR1fZQoaAZoCWgPQwglIvyLoBELwJSGlFKUaBVLMmgWR0C28mme18b8dX2UKGgGaAloD0MInx9GCI/WAsCUhpRSlGgVSzJoFkdAtvNIHE/B33V9lChoBmgJaA9DCCjXFMjsfBDAlIaUUpRoFUsyaBZHQLbzKqL0jC51fZQoaAZoCWgPQwhXem02VmIHwJSGlFKUaBVLMmgWR0C28wzw2ETQdX2UKGgGaAloD0MIC5jArbsZC8CUhpRSlGgVSzJoFkdAtvLvYAbQ1XV9lChoBmgJaA9DCMMrSZ7rOwTAlIaUUpRoFUsyaBZHQLbz0d6LOzJ1fZQoaAZoCWgPQwhyFYvfFBYDwJSGlFKUaBVLMmgWR0C287RxLkCFdX2UKGgGaAloD0MIISI17WL6B8CUhpRSlGgVSzJoFkdAtvOWfEn9enV9lChoBmgJaA9DCPiMRGgEOxDAlIaUUpRoFUsyaBZHQLbzeQwblzV1fZQoaAZoCWgPQwiRnEzcKigHwJSGlFKUaBVLMmgWR0C29FWFrVOLdX2UKGgGaAloD0MI0Jz1Kce0FMCUhpRSlGgVSzJoFkdAtvQ4AR02cnV9lChoBmgJaA9DCGTnbWx2pALAlIaUUpRoFUsyaBZHQLb0Ggbp/w11fZQoaAZoCWgPQwh5dvnWh9UCwJSGlFKUaBVLMmgWR0C28/xxHXmOdX2UKGgGaAloD0MIrz+Jz52AEMCUhpRSlGgVSzJoFkdAtvTJJJ5E+nV9lChoBmgJaA9DCNJUT+YffQXAlIaUUpRoFUsyaBZHQLb0q9If8uV1fZQoaAZoCWgPQwhbmfBL/RwNwJSGlFKUaBVLMmgWR0C29I3xnWaudX2UKGgGaAloD0MIuXL2zmhLBsCUhpRSlGgVSzJoFkdAtvRwdELH/HV9lChoBmgJaA9DCKTC2EKQQwbAlIaUUpRoFUsyaBZHQLb1PUAksz51fZQoaAZoCWgPQwi22ViJeTYFwJSGlFKUaBVLMmgWR0C29R/MKTjedX2UKGgGaAloD0MIWK1M+KWeB8CUhpRSlGgVSzJoFkdAtvUB1W8yvnV9lChoBmgJaA9DCB2QhH07qQnAlIaUUpRoFUsyaBZHQLb05E87p3Z1fZQoaAZoCWgPQwhE3JxKBqANwJSGlFKUaBVLMmgWR0C29bmYfGModX2UKGgGaAloD0MIw9MrZRmSE8CUhpRSlGgVSzJoFkdAtvWcV45cT3V9lChoBmgJaA9DCCBEMuTY2g/AlIaUUpRoFUsyaBZHQLb1fmUGFBZ1fZQoaAZoCWgPQwjZX3ZPHrYPwJSGlFKUaBVLMmgWR0C29WDkMkQgdX2UKGgGaAloD0MIyAvp8BCGBsCUhpRSlGgVSzJoFkdAtvY6ufVZtHV9lChoBmgJaA9DCHwrEhPUoBDAlIaUUpRoFUsyaBZHQLb2HUExIrh1fZQoaAZoCWgPQwjeOv922U8HwJSGlFKUaBVLMmgWR0C29f9Nzr/sdX2UKGgGaAloD0MItFn1udpaEcCUhpRSlGgVSzJoFkdAtvXiBDohZHV9lChoBmgJaA9DCNCX3v5cVAvAlIaUUpRoFUsyaBZHQLb2sIdELIB1fZQoaAZoCWgPQwh24QfnUwcEwJSGlFKUaBVLMmgWR0C29pMHv+fidX2UKGgGaAloD0MIRzmYTYAhEsCUhpRSlGgVSzJoFkdAtvZ1DQZ4wHV9lChoBmgJaA9DCAW/DTFecwfAlIaUUpRoFUsyaBZHQLb2V3dbgTB1fZQoaAZoCWgPQwjpDIy8rEkLwJSGlFKUaBVLMmgWR0C29yNz4k/sdX2UKGgGaAloD0MIvJLkub4vB8CUhpRSlGgVSzJoFkdAtvcF+iJwbXV9lChoBmgJaA9DCG8PQkC+xArAlIaUUpRoFUsyaBZHQLb26AZKnNx1fZQoaAZoCWgPQwjl8EknEgwEwJSGlFKUaBVLMmgWR0C29sqI3zczdX2UKGgGaAloD0MIHeVgNgHGAsCUhpRSlGgVSzJoFkdAtveZ9F4LTnV9lChoBmgJaA9DCEkqU8xBUBPAlIaUUpRoFUsyaBZHQLb3fNQTEit1fZQoaAZoCWgPQwgnFviKbt0IwJSGlFKUaBVLMmgWR0C29183l0YCdX2UKGgGaAloD0MIDat4I/OIC8CUhpRSlGgVSzJoFkdAtvdB7dBSk3V9lChoBmgJaA9DCIxLVdri2grAlIaUUpRoFUsyaBZHQLb4OFFlTWJ1fZQoaAZoCWgPQwgQPpRoyZMQwJSGlFKUaBVLMmgWR0C2+Bt4eLeidX2UKGgGaAloD0MImkS94NM8BMCUhpRSlGgVSzJoFkdAtvf975VOsXV9lChoBmgJaA9DCNl4sMVuHwnAlIaUUpRoFUsyaBZHQLb34LNwBHV1fZQoaAZoCWgPQwioABjPoKEIwJSGlFKUaBVLMmgWR0C2+PZ/Tb35dX2UKGgGaAloD0MInS6Lic1HCsCUhpRSlGgVSzJoFkdAtvjZYOlO5HV9lChoBmgJaA9DCAt/hjdrsAjAlIaUUpRoFUsyaBZHQLb4u74zrNZ1fZQoaAZoCWgPQwh97C5QUrARwJSGlFKUaBVLMmgWR0C2+J6BRQ7+dX2UKGgGaAloD0MI1PIDV3kCA8CUhpRSlGgVSzJoFkdAtvm87OmixnV9lChoBmgJaA9DCInwL4LGTAjAlIaUUpRoFUsyaBZHQLb5n/1g6U91fZQoaAZoCWgPQwhF8L+V7LgEwJSGlFKUaBVLMmgWR0C2+YJtvXK9dX2UKGgGaAloD0MIQN6rViZ8/7+UhpRSlGgVSzJoFkdAtvllbOeJ53V9lChoBmgJaA9DCAYtJGB0WQTAlIaUUpRoFUsyaBZHQLb6fHZ9NN91fZQoaAZoCWgPQwgXYvVHGKYMwJSGlFKUaBVLMmgWR0C2+l9VzZHvdX2UKGgGaAloD0MI/kRlw5oKCsCUhpRSlGgVSzJoFkdAtvpBx3mmtXV9lChoBmgJaA9DCPMcke9Syg3AlIaUUpRoFUsyaBZHQLb6JLDhtLt1fZQoaAZoCWgPQwgUQgddwgEIwJSGlFKUaBVLMmgWR0C2+24BzV+adX2UKGgGaAloD0MI2eicn+KYD8CUhpRSlGgVSzJoFkdAtvtRLnLaEnV9lChoBmgJaA9DCAZLdQEvcwLAlIaUUpRoFUsyaBZHQLb7M6t1ZDB1fZQoaAZoCWgPQwjnbWx2pBoFwJSGlFKUaBVLMmgWR0C2+xZimVJMdX2UKGgGaAloD0MIyT7IsmDiCMCUhpRSlGgVSzJoFkdAtvxT9JjDsXV9lChoBmgJaA9DCFBtcCL6NQ3AlIaUUpRoFUsyaBZHQLb8N3o9s8B1fZQoaAZoCWgPQwg9D+7O2g0IwJSGlFKUaBVLMmgWR0C2/BnLidaudX2UKGgGaAloD0MImFEst7R6BcCUhpRSlGgVSzJoFkdAtvv8jFAE+3V9lChoBmgJaA9DCGkAb4EEJQjAlIaUUpRoFUsyaBZHQLb9WpjMFEB1fZQoaAZoCWgPQwgOT6+UZagAwJSGlFKUaBVLMmgWR0C2/T2NzbN9dX2UKGgGaAloD0MIrBqEud3L/7+UhpRSlGgVSzJoFkdAtv0gkdFOPHV9lChoBmgJaA9DCL0ZNV8lnwjAlIaUUpRoFUsyaBZHQLb9BBnBciZ1fZQoaAZoCWgPQwhwCcA/pUr9v5SGlFKUaBVLMmgWR0C2/i7/CIk7dX2UKGgGaAloD0MI9yLajql7BMCUhpRSlGgVSzJoFkdAtv4RgXuVo3V9lChoBmgJaA9DCOLIA5FFugbAlIaUUpRoFUsyaBZHQLb984etCAt1fZQoaAZoCWgPQwi69ZoeFJQFwJSGlFKUaBVLMmgWR0C2/dYOpbUxdX2UKGgGaAloD0MIqfsApDbxCsCUhpRSlGgVSzJoFkdAtv6u/nGKh3V9lChoBmgJaA9DCN4dGavNfwzAlIaUUpRoFUsyaBZHQLb+kdbPhQ51fZQoaAZoCWgPQwh0Ka4q+y4OwJSGlFKUaBVLMmgWR0C2/nPmLcbjdX2UKGgGaAloD0MIfo0kQbiiB8CUhpRSlGgVSzJoFkdAtv5WTcIqsnV9lChoBmgJaA9DCBsS91j6kAbAlIaUUpRoFUsyaBZHQLb/JnrIHTt1fZQoaAZoCWgPQwiX4xWInpQHwJSGlFKUaBVLMmgWR0C2/wkA93bFdX2UKGgGaAloD0MI/aIE/YUeCcCUhpRSlGgVSzJoFkdAtv7rAUL2H3V9lChoBmgJaA9DCFYrE36p/wvAlIaUUpRoFUsyaBZHQLb+zWd3B551ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5d185a4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe5d1853580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685796801347186462, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACzxjPo7q7TzQERU/CzxjPo7q7TzQERU/CzxjPo7q7TzQERU/CzxjPo7q7TzQERU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6YprPyYHfL/2tqm/X0Z4P0trYL4Oois/TBZ5PnZvF78mPdk/FfGAP0FAqL5AdHW+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAALPGM+jurtPNARFT8CB+c8ZU+kuuGVCT0LPGM+jurtPNARFT8CB+c8ZU+kuuGVCT0LPGM+jurtPNARFT8CB+c8ZU+kuuGVCT0LPGM+jurtPNARFT8CB+c8ZU+kuuGVCT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.22190873 0.02904251 0.58230305]\n [0.22190873 0.02904251 0.58230305]\n [0.22190873 0.02904251 0.58230305]\n [0.22190873 0.02904251 0.58230305]]", "desired_goal": "[[ 0.92008835 -0.9844841 -1.325896 ]\n [ 0.9698238 -0.21915929 0.6704415 ]\n [ 0.24324912 -0.5915445 1.6971786 ]\n [ 1.0073572 -0.32861522 -0.23970127]]", "observation": "[[ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]\n [ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]\n [ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]\n [ 0.22190873 0.02904251 0.58230305 0.02820158 -0.00125359 0.0335902 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhP+KPXzzez2IfUs9jp/JPFhMUD3MB3M9dRtKPa257L1sn389F3EmPW6gzb3rqiQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06787017 0.0615115 0.04968026]\n [ 0.02461221 0.05085406 0.05933361]\n [ 0.04934259 -0.11558852 0.0624079 ]\n [ 0.04063519 -0.10040365 0.16080825]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwJXs2AjE37+UhpRSlIwBbJRLMowBdJRHQKm/hWEsasJ1fZQoaAZoCWgPQwgeUDblCm/lv5SGlFKUaBVLMmgWR0CpvzFEiMYNdX2UKGgGaAloD0MI1jcwuVFk5b+UhpRSlGgVSzJoFkdAqb7eOuJUHnV9lChoBmgJaA9DCKqezD/6JuK/lIaUUpRoFUsyaBZHQKm+hzLfUF11fZQoaAZoCWgPQwjumLoru6Dxv5SGlFKUaBVLMmgWR0CpwPLi2lVMdX2UKGgGaAloD0MIhEVFnE4y47+UhpRSlGgVSzJoFkdAqcCexdIGyHV9lChoBmgJaA9DCKs/wjBgydq/lIaUUpRoFUsyaBZHQKnATAOavzR1fZQoaAZoCWgPQwgYB5eOOc/fv5SGlFKUaBVLMmgWR0Cpv/WQGOdYdX2UKGgGaAloD0MIogp/hjdr1r+UhpRSlGgVSzJoFkdAqcIgqVhTfnV9lChoBmgJaA9DCPncCfZf5+S/lIaUUpRoFUsyaBZHQKnBzJkGzKN1fZQoaAZoCWgPQwgIILWJk/vxv5SGlFKUaBVLMmgWR0CpwXmois4ldX2UKGgGaAloD0MIIvyLoDGT6b+UhpRSlGgVSzJoFkdAqcEioybhFXV9lChoBmgJaA9DCLsoeuBjMOC/lIaUUpRoFUsyaBZHQKnDOeHzpX91fZQoaAZoCWgPQwgB9tGpK5/iv5SGlFKUaBVLMmgWR0CpwuWoNutPdX2UKGgGaAloD0MI1GGFWz4S4b+UhpRSlGgVSzJoFkdAqcKSqXF98nV9lChoBmgJaA9DCKAzaVN1j+u/lIaUUpRoFUsyaBZHQKnCO3++/QB1fZQoaAZoCWgPQwiVmj3QCoznv5SGlFKUaBVLMmgWR0CpxJcox59mdX2UKGgGaAloD0MI2NglqrcG67+UhpRSlGgVSzJoFkdAqcRDFId2gXV9lChoBmgJaA9DCGtgqwSLQ+e/lIaUUpRoFUsyaBZHQKnD8DK5kLB1fZQoaAZoCWgPQwjqPgCpTRziv5SGlFKUaBVLMmgWR0Cpw5khaC+UdX2UKGgGaAloD0MIZYnOMotQ2b+UhpRSlGgVSzJoFkdAqcXWkgwGnnV9lChoBmgJaA9DCJMCC2DKQOu/lIaUUpRoFUsyaBZHQKnFg5jH4oJ1fZQoaAZoCWgPQwhVTntKzgnkv5SGlFKUaBVLMmgWR0CpxTHYHxBmdX2UKGgGaAloD0MIhh4xem6h6r+UhpRSlGgVSzJoFkdAqcTawY+B6XV9lChoBmgJaA9DCIGv6NZr+um/lIaUUpRoFUsyaBZHQKnG/yBkI5Z1fZQoaAZoCWgPQwi6wOWxZmTcv5SGlFKUaBVLMmgWR0CpxqtH6MzedX2UKGgGaAloD0MIvth78UX75b+UhpRSlGgVSzJoFkdAqcZY5HVf/nV9lChoBmgJaA9DCKinj8Af/uS/lIaUUpRoFUsyaBZHQKnGAn6VMVV1fZQoaAZoCWgPQwgxtDo5Q3Hpv5SGlFKUaBVLMmgWR0CpyC7kn1FpdX2UKGgGaAloD0MICTNt/8pK77+UhpRSlGgVSzJoFkdAqcfa4FzMinV9lChoBmgJaA9DCMJOsWoQZua/lIaUUpRoFUsyaBZHQKnHiA80UGp1fZQoaAZoCWgPQwgLXvQVpJnmv5SGlFKUaBVLMmgWR0CpxzEgntv5dX2UKGgGaAloD0MIsWt7uyW56r+UhpRSlGgVSzJoFkdAqcljaXa8H3V9lChoBmgJaA9DCHDurx73reO/lIaUUpRoFUsyaBZHQKnJD225QP91fZQoaAZoCWgPQwhlw5rKojDpv5SGlFKUaBVLMmgWR0CpyLy/sVtXdX2UKGgGaAloD0MIcEBLV7AN4b+UhpRSlGgVSzJoFkdAqchmKyfL93V9lChoBmgJaA9DCETAIVSpWem/lIaUUpRoFUsyaBZHQKnKmNgjQiR1fZQoaAZoCWgPQwghXAGFevrtv5SGlFKUaBVLMmgWR0CpykSuZCv6dX2UKGgGaAloD0MIe9tMhXgk0L+UhpRSlGgVSzJoFkdAqcnxwfhddHV9lChoBmgJaA9DCMVTjzS4reW/lIaUUpRoFUsyaBZHQKnJmqebutx1fZQoaAZoCWgPQwgGvqJbr+nZv5SGlFKUaBVLMmgWR0Cpy7od2gWadX2UKGgGaAloD0MIH0lJD0Mr7L+UhpRSlGgVSzJoFkdAqctl+G47R3V9lChoBmgJaA9DCIQpyqXxC+u/lIaUUpRoFUsyaBZHQKnLEyrPt2N1fZQoaAZoCWgPQwjRdHYyOErjv5SGlFKUaBVLMmgWR0CpyrwmVqvedX2UKGgGaAloD0MI+BvtuOH36b+UhpRSlGgVSzJoFkdAqczefGuLaXV9lChoBmgJaA9DCB2qKck6HOu/lIaUUpRoFUsyaBZHQKnMil5WzWx1fZQoaAZoCWgPQwgEqRQ7Ggfmv5SGlFKUaBVLMmgWR0CpzDdpZfUndX2UKGgGaAloD0MIDag3o+Yr5b+UhpRSlGgVSzJoFkdAqcvgZZSvT3V9lChoBmgJaA9DCKAVGLK6VeK/lIaUUpRoFUsyaBZHQKnOB3fyf+V1fZQoaAZoCWgPQwhXW7G/7J7lv5SGlFKUaBVLMmgWR0CpzbU8mrsCdX2UKGgGaAloD0MIlugsswhF4L+UhpRSlGgVSzJoFkdAqc1kadc0L3V9lChoBmgJaA9DCEfH1ciutOS/lIaUUpRoFUsyaBZHQKnNDjMFEAp1fZQoaAZoCWgPQwjECOHRxhHav5SGlFKUaBVLMmgWR0Cpz1Oc+aBqdX2UKGgGaAloD0MIOnR63o0F4b+UhpRSlGgVSzJoFkdAqc7/jsD4g3V9lChoBmgJaA9DCK7VHvZCAe+/lIaUUpRoFUsyaBZHQKnOrW912aF1fZQoaAZoCWgPQwi/RSdLrffhv5SGlFKUaBVLMmgWR0CpzlZZKWcCdX2UKGgGaAloD0MIg2itaHMc4b+UhpRSlGgVSzJoFkdAqdCWYnfEXXV9lChoBmgJaA9DCKJfWz/95+q/lIaUUpRoFUsyaBZHQKnQQjyFwkx1fZQoaAZoCWgPQwgtzEI7p1nXv5SGlFKUaBVLMmgWR0Cpz+86eXiSdX2UKGgGaAloD0MIT1q4rMLm47+UhpRSlGgVSzJoFkdAqc+YFmnO0XV9lChoBmgJaA9DCP+xEB0CR96/lIaUUpRoFUsyaBZHQKnR35NXYDl1fZQoaAZoCWgPQwg2lUVhF0Xqv5SGlFKUaBVLMmgWR0Cp0YwkHD77dX2UKGgGaAloD0MIwHgGDf0T4L+UhpRSlGgVSzJoFkdAqdE5WxQizXV9lChoBmgJaA9DCCP2CaAYWd+/lIaUUpRoFUsyaBZHQKnQ4rZrYXh1fZQoaAZoCWgPQwiVRzfCoqLkv5SGlFKUaBVLMmgWR0Cp0+1pTMq0dX2UKGgGaAloD0MIDJQUWADT4L+UhpRSlGgVSzJoFkdAqdOaLyc0+HV9lChoBmgJaA9DCD/9Z82PP+W/lIaUUpRoFUsyaBZHQKnTSE0zj3p1fZQoaAZoCWgPQwilMO9xpgnuv5SGlFKUaBVLMmgWR0Cp0vNvGZNPdX2UKGgGaAloD0MISdv4E5UN07+UhpRSlGgVSzJoFkdAqdXf9P1tf3V9lChoBmgJaA9DCMJQhxVu+dC/lIaUUpRoFUsyaBZHQKnVjOZb6gx1fZQoaAZoCWgPQwiu1onL8Qrlv5SGlFKUaBVLMmgWR0Cp1TsTWXkYdX2UKGgGaAloD0MItOcyNQne3b+UhpRSlGgVSzJoFkdAqdTlGgBcRnV9lChoBmgJaA9DCIJwBRTq6dK/lIaUUpRoFUsyaBZHQKnX6Kqn3td1fZQoaAZoCWgPQwidLouJzcfHv5SGlFKUaBVLMmgWR0Cp15XBYV7AdX2UKGgGaAloD0MIqio0EMtm2L+UhpRSlGgVSzJoFkdAqddD7ALy+nV9lChoBmgJaA9DCD4kfO9v0N6/lIaUUpRoFUsyaBZHQKnW7eYUnG91fZQoaAZoCWgPQwjzHmeasP3hv5SGlFKUaBVLMmgWR0Cp2fk1EVnFdX2UKGgGaAloD0MIc2n8witJ0b+UhpRSlGgVSzJoFkdAqdmmMyad+XV9lChoBmgJaA9DCO4m+KbpM+C/lIaUUpRoFUsyaBZHQKnZVLuhK151fZQoaAZoCWgPQwjcZFQZxt3Mv5SGlFKUaBVLMmgWR0Cp2P7ah6BzdX2UKGgGaAloD0MI4syv5gDB07+UhpRSlGgVSzJoFkdAqdwqX0Gu93V9lChoBmgJaA9DCBUcXhCRGuG/lIaUUpRoFUsyaBZHQKnb12nKnvV1fZQoaAZoCWgPQwiOrPwyGCPav5SGlFKUaBVLMmgWR0Cp24YLLIPtdX2UKGgGaAloD0MI/rW8cr1t1b+UhpRSlGgVSzJoFkdAqdswLiMo+nV9lChoBmgJaA9DCEH0pExq6OK/lIaUUpRoFUsyaBZHQKneQzMzMzN1fZQoaAZoCWgPQwhUi4hi8gbYv5SGlFKUaBVLMmgWR0Cp3fAFPi1idX2UKGgGaAloD0MI0bAYda095L+UhpRSlGgVSzJoFkdAqd2eITGo73V9lChoBmgJaA9DCEIj2Lj+Xem/lIaUUpRoFUsyaBZHQKndR+pfhMt1fZQoaAZoCWgPQwiLOJ1kq8vjv5SGlFKUaBVLMmgWR0Cp36WoWHk+dX2UKGgGaAloD0MIUvLqHAMy6L+UhpRSlGgVSzJoFkdAqd9RhWo3rHV9lChoBmgJaA9DCELpCyHnfeK/lIaUUpRoFUsyaBZHQKne/n0TURZ1fZQoaAZoCWgPQwh+/nvw2qXpv5SGlFKUaBVLMmgWR0Cp3qdMK1G9dX2UKGgGaAloD0MI5zi3CffK2b+UhpRSlGgVSzJoFkdAqeDN6qsEJXV9lChoBmgJaA9DCJ595UF6itW/lIaUUpRoFUsyaBZHQKngebXHzYp1fZQoaAZoCWgPQwil2xK54Azfv5SGlFKUaBVLMmgWR0Cp4CbSZ0CBdX2UKGgGaAloD0MI+IxEaAQb4L+UhpRSlGgVSzJoFkdAqd/Pp6hQFnV9lChoBmgJaA9DCK9eRUYHJNC/lIaUUpRoFUsyaBZHQKnh8BwuM/B1fZQoaAZoCWgPQwhvfy4aMh7Lv5SGlFKUaBVLMmgWR0Cp4Zv5gw49dX2UKGgGaAloD0MI2ht8YTJV27+UhpRSlGgVSzJoFkdAqeFJGpda+3V9lChoBmgJaA9DCOLplbIMccy/lIaUUpRoFUsyaBZHQKng8eyzHCJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.2748070460947929, "std_reward": 0.09196808139491353, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-03T13:52:02.621157"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7fe189d8954bd94388c9135eb5e5e64635d14fd7a0a9d2ecdf7378f6fbd0756
|
3 |
size 2387
|