--- library_name: transformers license: other base_model: jeiku/instructered4B tags: - axolotl - generated_from_trainer model-index: - name: TheBest4B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: jeiku/instructered4B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false hub_model_id: jeiku/TheBest4B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true datasets: - path: FourOhFour/RP_Phase type: sharegpt conversation: chatml chat_template: chatml shuffle_merged_datasets: true val_set_size: 0.0025 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: EXP4B wandb_entity: wandb_watch: wandb_name: EXP4B wandb_log_model: gradient_accumulation_steps: 12 micro_batch_size: 3 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

# TheBest4B This model is a fine-tuned version of [jeiku/instructered4B](https://huggingface.co/jeiku/instructered4B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 12 - total_train_batch_size: 72 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 22 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8805 | 0.0089 | 1 | 2.7425 | | 1.7985 | 0.2491 | 28 | 2.2908 | | 1.727 | 0.4981 | 56 | 2.1943 | | 1.7429 | 0.7472 | 84 | 2.1665 | | 1.6867 | 0.9963 | 112 | 2.1309 | | 1.6463 | 1.2461 | 140 | 2.1267 | | 1.593 | 1.4959 | 168 | 2.1148 | | 1.604 | 1.7457 | 196 | 2.1129 | | 1.6085 | 1.9955 | 224 | 2.1148 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0