upload llava_arch.py
Browse files- llava_arch.py +531 -0
llava_arch.py
ADDED
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from abc import ABC, abstractmethod
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
# from .multimodal_encoder.builder import build_vision_tower
|
22 |
+
# from .multimodal_projector.builder import build_vision_projector
|
23 |
+
|
24 |
+
# from .builders import build_vision_tower, build_vision_projector
|
25 |
+
# from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
26 |
+
import pdb
|
27 |
+
|
28 |
+
|
29 |
+
#############################################################################
|
30 |
+
# builders
|
31 |
+
#############################################################################
|
32 |
+
|
33 |
+
###################################################################
|
34 |
+
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
import re
|
38 |
+
|
39 |
+
|
40 |
+
class IdentityMap(nn.Module):
|
41 |
+
def __init__(self):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
def forward(self, x, *args, **kwargs):
|
45 |
+
return x
|
46 |
+
|
47 |
+
@property
|
48 |
+
def config(self):
|
49 |
+
return {"mm_projector_type": 'identity'}
|
50 |
+
|
51 |
+
|
52 |
+
class SimpleResBlock(nn.Module):
|
53 |
+
def __init__(self, channels):
|
54 |
+
super().__init__()
|
55 |
+
self.pre_norm = nn.LayerNorm(channels)
|
56 |
+
|
57 |
+
self.proj = nn.Sequential(
|
58 |
+
nn.Linear(channels, channels),
|
59 |
+
nn.GELU(),
|
60 |
+
nn.Linear(channels, channels)
|
61 |
+
)
|
62 |
+
def forward(self, x):
|
63 |
+
x = self.pre_norm(x)
|
64 |
+
return x + self.proj(x)
|
65 |
+
|
66 |
+
|
67 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
68 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
69 |
+
|
70 |
+
if projector_type == 'linear':
|
71 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
72 |
+
|
73 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
74 |
+
if mlp_gelu_match:
|
75 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
76 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
77 |
+
for _ in range(1, mlp_depth):
|
78 |
+
modules.append(nn.GELU())
|
79 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
80 |
+
return nn.Sequential(*modules)
|
81 |
+
|
82 |
+
if projector_type == 'identity':
|
83 |
+
return IdentityMap()
|
84 |
+
|
85 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
86 |
+
###################################################################
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
###################################################################
|
91 |
+
|
92 |
+
import os
|
93 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
94 |
+
from transformers import AutoModel
|
95 |
+
|
96 |
+
|
97 |
+
class CLIPVisionTower(nn.Module):
|
98 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.is_loaded = False
|
102 |
+
|
103 |
+
self.vision_tower_name = vision_tower
|
104 |
+
self.select_layer = args.mm_vision_select_layer
|
105 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
106 |
+
|
107 |
+
if not delay_load:
|
108 |
+
self.load_model()
|
109 |
+
else:
|
110 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
111 |
+
|
112 |
+
def load_model(self):
|
113 |
+
print(f'loading vision model from {self.vision_tower_name}')
|
114 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
115 |
+
if 'clip' in self.vision_tower_name.lower():
|
116 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
117 |
+
|
118 |
+
elif 'internvit' in self.vision_tower_name.lower():
|
119 |
+
self.vision_tower = AutoModel.from_pretrained(self.vision_tower_name, trust_remote_code=True)
|
120 |
+
else:
|
121 |
+
raise ValueError(f'Please implement the loading of vision encoder here')
|
122 |
+
|
123 |
+
self.vision_tower.requires_grad_(False)
|
124 |
+
|
125 |
+
self.is_loaded = True
|
126 |
+
|
127 |
+
def feature_select(self, image_forward_outs):
|
128 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
129 |
+
if self.select_feature == 'patch':
|
130 |
+
image_features = image_features[:, 1:]
|
131 |
+
elif self.select_feature == 'cls_patch':
|
132 |
+
image_features = image_features
|
133 |
+
else:
|
134 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
135 |
+
return image_features
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def forward(self, images):
|
139 |
+
if type(images) is list:
|
140 |
+
image_features = []
|
141 |
+
for image in images:
|
142 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
143 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
144 |
+
image_features.append(image_feature)
|
145 |
+
else:
|
146 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
147 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
148 |
+
|
149 |
+
return image_features
|
150 |
+
|
151 |
+
@property
|
152 |
+
def dummy_feature(self):
|
153 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
154 |
+
|
155 |
+
@property
|
156 |
+
def dtype(self):
|
157 |
+
return self.vision_tower.dtype
|
158 |
+
|
159 |
+
@property
|
160 |
+
def device(self):
|
161 |
+
return self.vision_tower.device
|
162 |
+
|
163 |
+
@property
|
164 |
+
def config(self):
|
165 |
+
if self.is_loaded:
|
166 |
+
return self.vision_tower.config
|
167 |
+
else:
|
168 |
+
return self.cfg_only
|
169 |
+
|
170 |
+
@property
|
171 |
+
def hidden_size(self):
|
172 |
+
return self.config.hidden_size
|
173 |
+
|
174 |
+
@property
|
175 |
+
def num_patches(self):
|
176 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
181 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
182 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
183 |
+
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"):
|
184 |
+
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
185 |
+
|
186 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
187 |
+
|
188 |
+
|
189 |
+
#############################################################################
|
190 |
+
# builders
|
191 |
+
#############################################################################
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
#############################################################################
|
196 |
+
# constants
|
197 |
+
#############################################################################
|
198 |
+
|
199 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
200 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
201 |
+
|
202 |
+
LOGDIR = "."
|
203 |
+
|
204 |
+
# Model Constants
|
205 |
+
IGNORE_INDEX = -100
|
206 |
+
IMAGE_TOKEN_INDEX = -200
|
207 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
208 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
209 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
210 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
211 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
212 |
+
|
213 |
+
#############################################################################
|
214 |
+
# constants
|
215 |
+
#############################################################################
|
216 |
+
|
217 |
+
|
218 |
+
class LlavaMetaModel:
|
219 |
+
|
220 |
+
def __init__(self, config):
|
221 |
+
super(LlavaMetaModel, self).__init__(config)
|
222 |
+
|
223 |
+
if hasattr(config, "mm_vision_tower"):
|
224 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
225 |
+
self.mm_projector = build_vision_projector(config)
|
226 |
+
|
227 |
+
def get_vision_tower(self):
|
228 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
229 |
+
if type(vision_tower) is list:
|
230 |
+
vision_tower = vision_tower[0]
|
231 |
+
return vision_tower
|
232 |
+
|
233 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
234 |
+
vision_tower = model_args.vision_tower
|
235 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
236 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
237 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
238 |
+
|
239 |
+
self.config.mm_vision_tower = vision_tower
|
240 |
+
|
241 |
+
if self.get_vision_tower() is None:
|
242 |
+
vision_tower = build_vision_tower(model_args)
|
243 |
+
|
244 |
+
if fsdp is not None and len(fsdp) > 0:
|
245 |
+
self.vision_tower = [vision_tower]
|
246 |
+
else:
|
247 |
+
self.vision_tower = vision_tower
|
248 |
+
else:
|
249 |
+
if fsdp is not None and len(fsdp) > 0:
|
250 |
+
vision_tower = self.vision_tower[0]
|
251 |
+
else:
|
252 |
+
vision_tower = self.vision_tower
|
253 |
+
vision_tower.load_model()
|
254 |
+
|
255 |
+
self.config.use_mm_proj = True
|
256 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
257 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
258 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
259 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
260 |
+
|
261 |
+
if getattr(self, 'mm_projector', None) is None:
|
262 |
+
self.mm_projector = build_vision_projector(self.config)
|
263 |
+
else:
|
264 |
+
# In case it is frozen by LoRA
|
265 |
+
for p in self.mm_projector.parameters():
|
266 |
+
p.requires_grad = True
|
267 |
+
|
268 |
+
if pretrain_mm_mlp_adapter is not None:
|
269 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
270 |
+
def get_w(weights, keyword):
|
271 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
272 |
+
|
273 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
274 |
+
|
275 |
+
|
276 |
+
class LlavaMetaForCausalLM(ABC):
|
277 |
+
|
278 |
+
@abstractmethod
|
279 |
+
def get_model(self):
|
280 |
+
pass
|
281 |
+
|
282 |
+
@abstractmethod
|
283 |
+
def get_tokenizer(self):
|
284 |
+
pass
|
285 |
+
|
286 |
+
def get_vision_tower(self):
|
287 |
+
return self.get_model().get_vision_tower()
|
288 |
+
|
289 |
+
def encode_images(self, images):
|
290 |
+
image_features = self.get_model().get_vision_tower()(images)
|
291 |
+
image_features = self.get_model().mm_projector(image_features)
|
292 |
+
return image_features
|
293 |
+
|
294 |
+
def prepare_inputs_labels_for_multimodal_new(
|
295 |
+
self, input_ids: list[torch.tensor], position_ids, attention_mask: list[torch.tensor], past_key_values, labels, images
|
296 |
+
):
|
297 |
+
vision_tower = self.get_vision_tower()
|
298 |
+
if not self.training: # TODO: check this out!!
|
299 |
+
# pdb.set_trace()
|
300 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
301 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
302 |
+
|
303 |
+
if attention_mask is None:
|
304 |
+
# only happen for qwen at inference
|
305 |
+
# raise ValueError(f'should not be here except for Qwen!')
|
306 |
+
return input_ids, None, attention_mask, past_key_values, None, labels
|
307 |
+
|
308 |
+
target_shape = past_key_values[-1][-1].shape[-2] + 1
|
309 |
+
attention_mask = torch.cat((attention_mask, torch.ones(
|
310 |
+
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
311 |
+
dtype=attention_mask.dtype,
|
312 |
+
device=attention_mask.device
|
313 |
+
)), dim=1)
|
314 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
315 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
316 |
+
|
317 |
+
|
318 |
+
# ####################### this block must be optimized! #######################
|
319 |
+
# if type(images) is list or images.ndim == 5:
|
320 |
+
# concat_images = torch.cat([image for image in images], dim=0)
|
321 |
+
# image_features = self.encode_images(concat_images)
|
322 |
+
# split_sizes = [image.shape[0] for image in images]
|
323 |
+
# image_features = torch.split(image_features, split_sizes, dim=0)
|
324 |
+
# image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
|
325 |
+
# else:
|
326 |
+
# image_features = self.encode_images(images).to(self.device)
|
327 |
+
# ####################### this block must be optimized! #######################
|
328 |
+
|
329 |
+
# ####################### optimized #######################
|
330 |
+
if getattr(self, 'cached_image_features', None) is None:
|
331 |
+
# this attribute should be cleared in bot.clear_history()
|
332 |
+
if type(images) is list or images.ndim == 5:
|
333 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
334 |
+
image_features = self.encode_images(concat_images)
|
335 |
+
split_sizes = [image.shape[0] for image in images]
|
336 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
337 |
+
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
|
338 |
+
else:
|
339 |
+
image_features = self.encode_images(images).to(self.device)
|
340 |
+
self.cached_image_features = image_features
|
341 |
+
image_features = self.cached_image_features
|
342 |
+
# ####################### optimized #######################
|
343 |
+
|
344 |
+
|
345 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
346 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
347 |
+
raise NotImplementedError
|
348 |
+
|
349 |
+
# Let's just add dummy tensors if they do not exist,
|
350 |
+
# it is a headache to deal with None all the time.
|
351 |
+
# But it is not ideal, and if you have a better idea,
|
352 |
+
# please open an issue / submit a PR, thanks.
|
353 |
+
_labels = labels
|
354 |
+
_position_ids = position_ids
|
355 |
+
_attention_mask = attention_mask
|
356 |
+
if attention_mask is None:
|
357 |
+
# attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
358 |
+
attention_mask = [torch.tensor([1]*l).to(input_ids).bool() for l in map(len, [ip for ip in input_ids])]
|
359 |
+
else:
|
360 |
+
# attention_mask = attention_mask.bool()
|
361 |
+
attention_mask = [att.bool() for att in attention_mask]
|
362 |
+
|
363 |
+
# if position_ids is None:
|
364 |
+
# position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
365 |
+
|
366 |
+
if labels is None:
|
367 |
+
labels = [torch.tensor([IGNORE_INDEX]*l).to(input_ids) for l in map(len, [ip for ip in input_ids])]
|
368 |
+
# labels = torch.full_like(input_ids, IGNORE_INDEX)
|
369 |
+
else:
|
370 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
371 |
+
# remove the padding using attention_mask -- TODO: double check
|
372 |
+
# pdb.set_trace()
|
373 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
374 |
+
|
375 |
+
new_input_embeds = []
|
376 |
+
new_labels = []
|
377 |
+
cur_image_idx = 0
|
378 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
379 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
380 |
+
if num_images == 0:
|
381 |
+
|
382 |
+
############### FIXME ###############
|
383 |
+
if cur_image_idx > len(image_features)-1:
|
384 |
+
cur_image_idx = len(image_features)-1
|
385 |
+
print(f'warning: {input_ids}')
|
386 |
+
############### FIXME ###############
|
387 |
+
|
388 |
+
cur_image_features = image_features[cur_image_idx]
|
389 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
390 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
391 |
+
new_input_embeds.append(cur_input_embeds)
|
392 |
+
new_labels.append(labels[batch_idx])
|
393 |
+
cur_image_idx += 1
|
394 |
+
continue
|
395 |
+
|
396 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
397 |
+
cur_input_ids_noim = []
|
398 |
+
cur_labels = labels[batch_idx]
|
399 |
+
cur_labels_noim = []
|
400 |
+
for i in range(len(image_token_indices) - 1):
|
401 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
402 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
403 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
404 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
405 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
406 |
+
cur_new_input_embeds = []
|
407 |
+
cur_new_labels = []
|
408 |
+
|
409 |
+
# you have 10 images, but you have 11 placeholders
|
410 |
+
for i in range(num_images + 1):
|
411 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
412 |
+
cur_new_labels.append(cur_labels_noim[i])
|
413 |
+
if i < num_images:
|
414 |
+
############### FIXME ###############
|
415 |
+
if cur_image_idx > len(image_features)-1:
|
416 |
+
cur_image_idx = len(image_features)-1
|
417 |
+
print(f'warning: {input_ids}')
|
418 |
+
############### FIXME ###############
|
419 |
+
|
420 |
+
cur_image_features = image_features[cur_image_idx]
|
421 |
+
cur_image_idx += 1
|
422 |
+
cur_new_input_embeds.append(cur_image_features)
|
423 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
424 |
+
|
425 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
426 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
427 |
+
|
428 |
+
new_input_embeds.append(cur_new_input_embeds)
|
429 |
+
new_labels.append(cur_new_labels)
|
430 |
+
|
431 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
432 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
433 |
+
if tokenizer_model_max_length is not None:
|
434 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
435 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
436 |
+
|
437 |
+
# Combine them
|
438 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
439 |
+
batch_size = len(new_input_embeds)
|
440 |
+
|
441 |
+
new_input_embeds_padded = []
|
442 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
443 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=torch.bool, device=attention_mask[0].device)
|
444 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=torch.long, device=attention_mask[0].device)
|
445 |
+
|
446 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
447 |
+
cur_len = cur_new_embed.shape[0]
|
448 |
+
# print(f'cur_len[{i}]before padding: {cur_len}')
|
449 |
+
# if i==0:
|
450 |
+
# print(f"{getattr(self.config, 'tokenizer_padding_side', 'right')} {self.get_tokenizer().padding_side}")
|
451 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": # checked, this is correct
|
452 |
+
# if self.get_tokenizer().padding_side == 'left':
|
453 |
+
new_input_embeds_padded.append(torch.cat((
|
454 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
455 |
+
cur_new_embed
|
456 |
+
), dim=0))
|
457 |
+
if cur_len > 0:
|
458 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
459 |
+
attention_mask[i, -cur_len:] = True
|
460 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
461 |
+
else:
|
462 |
+
new_input_embeds_padded.append(torch.cat((
|
463 |
+
cur_new_embed,
|
464 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
465 |
+
), dim=0))
|
466 |
+
if cur_len > 0:
|
467 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
468 |
+
attention_mask[i, :cur_len] = True
|
469 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
470 |
+
|
471 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
472 |
+
|
473 |
+
if _labels is None:
|
474 |
+
new_labels = None
|
475 |
+
else:
|
476 |
+
new_labels = new_labels_padded
|
477 |
+
|
478 |
+
if _attention_mask is None:
|
479 |
+
attention_mask = None
|
480 |
+
else:
|
481 |
+
# attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
482 |
+
attention_mask = attention_mask.to(dtype=torch.bool)
|
483 |
+
|
484 |
+
if _position_ids is None:
|
485 |
+
position_ids = None
|
486 |
+
|
487 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
488 |
+
|
489 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
490 |
+
if model_args.mm_use_im_patch_token:
|
491 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
492 |
+
self.resize_token_embeddings(len(tokenizer))
|
493 |
+
|
494 |
+
if model_args.mm_use_im_start_end:
|
495 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
496 |
+
self.resize_token_embeddings(len(tokenizer))
|
497 |
+
|
498 |
+
if num_new_tokens > 0:
|
499 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
500 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
501 |
+
|
502 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
503 |
+
dim=0, keepdim=True)
|
504 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
505 |
+
dim=0, keepdim=True)
|
506 |
+
|
507 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
508 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
509 |
+
|
510 |
+
if model_args.tune_mm_mlp_adapter:
|
511 |
+
for p in self.get_input_embeddings().parameters():
|
512 |
+
p.requires_grad = True
|
513 |
+
for p in self.get_output_embeddings().parameters():
|
514 |
+
p.requires_grad = False
|
515 |
+
|
516 |
+
if model_args.pretrain_mm_mlp_adapter:
|
517 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
518 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
519 |
+
assert num_new_tokens == 2
|
520 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
521 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
522 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
523 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
524 |
+
else:
|
525 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
526 |
+
elif model_args.mm_use_im_patch_token:
|
527 |
+
if model_args.tune_mm_mlp_adapter:
|
528 |
+
for p in self.get_input_embeddings().parameters():
|
529 |
+
p.requires_grad = False
|
530 |
+
for p in self.get_output_embeddings().parameters():
|
531 |
+
p.requires_grad = False
|