File size: 12,177 Bytes
34b5eca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import math
import sys
import pdb
from typing import Dict, Any
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
# MistralConfig, MistralModel, MistralForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.cache_utils import Cache, DynamicCache
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from .modeling_phi3 import Phi3ForCausalLM, Phi3Model, Phi3Config
from .generation_utils import build_allava_input
################ Phi ###############################
class LlavaPhi3Config(Phi3Config):
model_type = "llava_phi3"
class LlavaPhi3Model(LlavaMetaModel, Phi3Model):
config_class = LlavaPhi3Config
def __init__(self, config: Phi3Config):
super(LlavaPhi3Model, self).__init__(config)
class LlavaPhi3ForCausalLM(Phi3ForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaPhi3Config
def __init__(self, config, init_vision_encoder_from_ckpt=True):
config.flash_attn = True
config.flash_rotary = True
config.fused_dense = True
config._attn_implementation = "flash_attention_2"
super(Phi3ForCausalLM, self).__init__(config)
# self.model is used in LlavaMetaForCausalLM.get_model(); self.transformer is used in PhiForCausalLM.forward()
self.model = LlavaPhi3Model(config)
# self.model.embd =
if hasattr(self.model, '_use_flash_attention_2'):
assert self.model._use_flash_attention_2, 'flash attn is not enabled. check it out!'
# self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if init_vision_encoder_from_ckpt:
vision_tower = self.get_vision_tower()
print(f'loading from CLIP first. This should only be used at inference!!!')
vision_tower.load_model() #
# Initialize weights and apply final processing
self.post_init()
# ############ these two methods are missing in modeling_phi.py
# def get_input_embeddings(self) -> nn.Embedding:
# return self.model.embd.wte
# def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
# self.model.embd.wte = new_embeddings
# ############ these two methods are missing in modeling_phi.py
def get_model(self):
return self.model
def get_tokenizer(self):
return self.tokenizer
def get_processor(self):
return self.model.vision_tower.image_processor
def set_tokenizer_eos_id(self):
eos_token_id = 30027 # only for llava_phi3
self.tokenizer.eos_token_id = eos_token_id
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
# pdb.set_trace()
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
# ) = self.prepare_inputs_labels_for_multimodal(
) = self.prepare_inputs_labels_for_multimodal_new(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images
)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
**kwargs,
) :
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_
) = self.prepare_inputs_labels_for_multimodal_new(
inputs,
position_ids,
attention_mask,
None,
None,
images
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
# print(inputs_embeds.shape)
return super().generate(
position_ids=None,
attention_mask=None,
inputs_embeds=inputs_embeds,
**kwargs
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs):
'''
This function is called for each token at inference
'''
# pdb.set_trace()
images = kwargs.pop("images", None)
####################################################
# lines from modeling_phi.py
####################################################
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif past_length >= input_ids.shape[1]:
input_ids = input_ids[:, [-1]] # only keep the last one!
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
####################################################
# end of lines from modeling_phi.py
####################################################
if images is not None:
model_inputs['images'] = images
return model_inputs
# def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
# images = kwargs.pop("images", None)
# _inputs = super().prepare_inputs_for_generation(
# input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
# )
# if images is not None:
# _inputs['images'] = images
# return _inputs
def chat(
self,
texts: Optional[str | list[list[str, str]]],
images: Optional[str | list[str]] = None,
history: Optional[list[str]] = None,
stream = False,
return_history = False,
**kwargs
):
'''
texts: if `str`, then generate for a single round; if list[dict],
images: str (optional), local path to an image.
'''
use_cache = kwargs.pop('use_cache', True)
if 'eos_token_id' in kwargs:
_ = kwargs.pop('eos_token_id', None)
print(f'eos_token_id {_} from gen_kwargs is popped since it is not needed.')
# pdb.set_trace()
############################
# merge history
############################
input_ids, image_tensors, history = build_allava_input(
tokenizer = self.get_tokenizer(),
processor = self.get_processor(),
texts = texts,
images = images,
history=history,
return_history=return_history,
device = self.device
)
############################
# generate response
############################
# with torch.autocast(device_type='cuda'):
if 'cuda' in str(self.device):
device_type = 'cuda'
else:
device_type = 'cpu'
with torch.autocast(device_type=device_type, dtype=self.dtype):
output_ids = self.generate(
inputs=input_ids,
images=image_tensors,
use_cache=use_cache,
**kwargs)
answer = self.get_tokenizer().decode(output_ids[0, :], skip_special_tokens=True).strip()
if return_history:
history[-1][-1] = answer
return answer, history
return answer
AutoConfig.register("llava_phi3", LlavaPhi3Config)
AutoModelForCausalLM.register(LlavaPhi3Config, LlavaPhi3ForCausalLM) |