File size: 8,867 Bytes
e48a6a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from typing import List
from queue import Queue

import torch
from PIL import Image
from copy import deepcopy
import requests, os

IMAGE_TOKEN_INDEX=-200
blacklist = ['<image>', '<s>', '</s>']
max_num_images = 3 # phi has a context length limit of 2048 and each image occupies 576 tokens.

def input_moderation(texts: list[list[str]]):
    # perform input moderation on each message
    for text_pair in texts:
        # in-place operation
        for b in blacklist:
            text_pair[0] = text_pair[0].replace(b, '')
            if text_pair[1] is not None:
                text_pair[1] = text_pair[1].replace(b, '')
        
    return texts

def insert_image_placeholder(t, num_images, placeholder='<image>', sep='\n'):
    for _ in range(num_images):
        t = f"{placeholder}{sep}" + t
    return t

def get_conv(texts):
    ret = []
    
    for conv in texts:
        ret.append({'from': 'human', 'value': conv[0]})
        ret.append({'from': 'gpt', 'value': conv[1]}) # this is None for the last one

    return ret

# copied from llava
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): 
    prompt_chunks = [tokenizer(chunk, add_special_tokens=False).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids
    
def preprocess(tokenizer, data: list, return_tensors='pt'):
    '''
    [
        {
            'from': 'human',
            'value': xxx,
        },
        {
            'from': 'gpt',
            'value': xxx
        }
    ]
    '''
    # needs update
    if not isinstance(data, list):
        raise ValueError('must be a list')

    # this is per model (tokenizer)
    return preprocess_allava(tokenizer, data, return_tensors=return_tensors)

    


def preprocess_allava(tokenizer, convs: list, return_tensors) -> list: # tokenize and concat the coversations
    input_ids = torch.tensor([1]).long()

    for ind, conv in enumerate(convs):

        if ind % 2 == 0: # human
            h = conv['value'].strip()
            h = f"<|user|>\n{h}<|end|>\n"
            cur_input_ids = tokenizer_image_token(prompt=h, tokenizer=tokenizer, return_tensors=return_tensors)
            
            # if len(labels) > 0:
            #     labels += [self.tokenizer.eos_token_id] + [self.ignore_index] * (len(value_ids)-1)
            # input_ids += cur_input_ids
            if input_ids is None:
                input_ids = cur_input_ids
            else:
                input_ids = torch.cat([input_ids, cur_input_ids])

        else: # gpt
            g = conv['value']
            if g is not None:
                g = f"<|assistant|>\n{g}<|end|>\n"
                cur_input_ids = tokenizer(g, add_special_tokens= False, truncation=True, return_tensors='pt').input_ids[0]
                input_ids = torch.cat([input_ids, cur_input_ids])
            else:
                g = f'<|assistant|>\n'

    return input_ids


# copied from llava
def get_image_tensors(processor, images, device):
    list_image_tensors = []
    crop_size = processor.crop_size
    for fp in images:
        if fp is None: # None is used as a placeholder
            list_image_tensors.append(torch.zeros(3, crop_size['height'], crop_size['width']).to(device))
            continue
        elif isinstance(fp, str):
            image = Image.open(fp).convert('RGB')
        elif isinstance(fp, Image.Image):
            image = fp # already an image
        else:
            raise TypeError(f'Unsupported type {type(fp)}')

        # this is the way of preprocessing images we used in training, so we impose it here
        if True:
            # self.data_args.image_aspect_ratio == 'pad'
            def expand2square(pil_img, background_color):
                width, height = pil_img.size
                if pil_img.mode == 'L':
                    pil_img = pil_img.convert('RGB')

                if width == height:
                    return pil_img
                elif width > height:
                    result = Image.new(pil_img.mode, (width, width), background_color)
                    result.paste(pil_img, (0, (width - height) // 2))
                    return result
                else:
                    result = Image.new(pil_img.mode, (height, height), background_color)
                    result.paste(pil_img, ((height - width) // 2, 0))
                    return result
            
            image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
            image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
        else:
            image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] # a tensor
        list_image_tensors.append(image.to(device))
        # list_image_tensors.append(image)
    return list_image_tensors




def build_allava_input(tokenizer, processor, texts, images, history=None, return_history=False, device='cuda'):
    '''
    texts: [[]]
    '''

    ############################
    # 1. preprocess texts
    ############################
    if isinstance(texts, str):
        texts = [[texts, None]]
    else:
        assert isinstance(texts, list) and isinstance(texts[0], list) , 'texts must be a list of list'
    
    if history is not None:
        texts = history + texts # concat them together

    texts = input_moderation(texts)


    ############################
    # 2. preprocess images
    ############################
    if isinstance(images, str) or isinstance(images, Image.Image):
        images = [images]

    valid_images = []
    if images is None:
        images = [None]
    
    for img in images:
        try:
            if os.path.exists(img): # make sure that the path exists
                img = Image.open(img).convert('RGB') 
            else: # else it must be a URL
                img = Image.open(requests.get(img, stream=True).raw)

            valid_images.append(img)
        except:
            continue
        
    images = valid_images

    if images == []:
        images = [None]
        

    assert len(images) < max_num_images, f'Currently at most {max_num_images} images are supported'

    ############################
    # 3. collate conv
    ############################

    history = deepcopy(texts) # history is the texts without <image> placeholders

    # insert <image>
    image_place_holder_inserted = insert_image_placeholder(texts[0][0], len(images) if None not in images else 0) # only insert the placeholders for user input at the 1st round
    texts[0][0] = image_place_holder_inserted

    # collate strings into conv
    conv = get_conv(texts)

    # make input ids
    input_ids = preprocess(tokenizer, conv, return_tensors='pt').unsqueeze(0).to(device)

    list_image_tensors = get_image_tensors(processor, images, device)
    image_tensors = torch.stack(list_image_tensors)

    try:
        dtype = torch.bfloat16
        # if your hardware does not support bf16, the following line raises an error
        torch.tensor(1, dtype=dtype).cuda()
    except:
        # default using fp16
        dtype = torch.float16

    if return_history:
        return input_ids, image_tensors, history
    
    return input_ids, image_tensors, None



class TextIterStreamer:
    def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
        self.tokenizer = tokenizer
        self.skip_prompt = skip_prompt
        self.skip_special_tokens = skip_special_tokens
        self.tokens = []
        self.text_queue = Queue()
        self.next_tokens_are_prompt = True

    def put(self, value):
        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
        else:
            if len(value.shape) > 1:
                value = value[0]
            self.tokens.extend(value.tolist())
            self.text_queue.put(
                self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))

    def end(self):
        self.text_queue.put(None)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.text_queue.get()
        if value is None:
            raise StopIteration()
        else:
            return value