--- base_model: Qwen/Qwen2-7B library_name: peft tags: - generated_from_trainer model-index: - name: workspace/data/outputs/Qwen2-7B-TestFinetune-LORA results: [] datasets: - NobodyExistsOnTheInternet/ToxicQAFinal --- If I thought I had no idea what I was doing with quantization, I REALLY have no idea what I’m doing with LORA Fine Tuning... This works in my 10 second testing, but I have no idea beyond that, nor did do anything other than asking it to do horrible things and seeing if it complied. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: /workspace/data/models/Qwen2-7B model_type: Qwen2ForCausalLM tokenizer_type: Qwen2Tokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NobodyExistsOnTheInternet/ToxicQAFinal type: sharegpt # - path: /workspace/data/SystemChat_filtered_sharegpt.jsonl # type: sharegpt # conversation: chatml # - path: /workspace/data/Opus_Instruct-v2-6.5K-Filtered-v2.json # type: # field_system: system # field_instruction: prompt # field_output: response # format: "[INST] {instruction} [/INST]" # no_input_format: "[INST] {instruction} [/INST]" # - path: Undi95/orthogonal-activation-steering-TOXIC # type: # field_instruction: goal # field_output: target # format: "[INST] {instruction} [/INST]" # no_input_format: "[INST] {instruction} [/INST]" # split: test # - path: cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered # type: alpaca # split: train dataset_prepared_path: /workspace/data/last_run_prepared val_set_size: 0.15 output_dir: /workspace/data/outputs/Qwen2-7B-TestFinetune-LORA chat_template: chatml sequence_len: 8192 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 3e-5 train_on_inputs: false group_by_length: true bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 2 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|im_end|>" ```

# workspace/data/outputs/Qwen2-7B-TestFinetune-LORA This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1751 | 0.0169 | 1 | 1.1860 | | 1.1007 | 0.5063 | 30 | 1.0912 | | 1.0418 | 1.0127 | 60 | 1.0428 | | 1.0105 | 1.5042 | 90 | 1.0232 | | 1.0082 | 2.0105 | 120 | 1.0127 | | 0.9946 | 2.5042 | 150 | 1.0074 | | 0.9826 | 3.0105 | 180 | 1.0057 | | 0.9898 | 3.5021 | 210 | 1.0055 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1