File size: 2,851 Bytes
dfa440d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cdp_hyl_fd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cdp_hyl_fd

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4997
- Accuracy: 0.8235

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7019        | 1.0   | 55   | 1.1939          | 0.5      |
| 0.1305        | 2.0   | 110  | 0.6574          | 0.7353   |
| 0.0242        | 3.0   | 165  | 0.5197          | 0.8235   |
| 0.0081        | 4.0   | 220  | 0.3666          | 0.8824   |
| 0.0051        | 5.0   | 275  | 0.4560          | 0.8529   |
| 0.0035        | 6.0   | 330  | 0.4470          | 0.8235   |
| 0.0026        | 7.0   | 385  | 0.4395          | 0.8529   |
| 0.0022        | 8.0   | 440  | 0.4486          | 0.8235   |
| 0.0018        | 9.0   | 495  | 0.4684          | 0.8235   |
| 0.0015        | 10.0  | 550  | 0.4644          | 0.8529   |
| 0.0013        | 11.0  | 605  | 0.4669          | 0.8235   |
| 0.0012        | 12.0  | 660  | 0.4657          | 0.8235   |
| 0.0011        | 13.0  | 715  | 0.4799          | 0.8235   |
| 0.001         | 14.0  | 770  | 0.4817          | 0.8235   |
| 0.0009        | 15.0  | 825  | 0.4998          | 0.8235   |
| 0.0008        | 16.0  | 880  | 0.4964          | 0.8235   |
| 0.0008        | 17.0  | 935  | 0.5025          | 0.8235   |
| 0.0007        | 18.0  | 990  | 0.4954          | 0.8235   |
| 0.0007        | 19.0  | 1045 | 0.4933          | 0.8235   |
| 0.0007        | 20.0  | 1100 | 0.5014          | 0.8235   |
| 0.0006        | 21.0  | 1155 | 0.4961          | 0.8235   |
| 0.0006        | 22.0  | 1210 | 0.4955          | 0.8235   |
| 0.0006        | 23.0  | 1265 | 0.4984          | 0.8235   |
| 0.0006        | 24.0  | 1320 | 0.4988          | 0.8235   |
| 0.0006        | 25.0  | 1375 | 0.4997          | 0.8235   |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0