--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: cdp_hyl_fd results: [] --- # cdp_hyl_fd This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4997 - Accuracy: 0.8235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7019 | 1.0 | 55 | 1.1939 | 0.5 | | 0.1305 | 2.0 | 110 | 0.6574 | 0.7353 | | 0.0242 | 3.0 | 165 | 0.5197 | 0.8235 | | 0.0081 | 4.0 | 220 | 0.3666 | 0.8824 | | 0.0051 | 5.0 | 275 | 0.4560 | 0.8529 | | 0.0035 | 6.0 | 330 | 0.4470 | 0.8235 | | 0.0026 | 7.0 | 385 | 0.4395 | 0.8529 | | 0.0022 | 8.0 | 440 | 0.4486 | 0.8235 | | 0.0018 | 9.0 | 495 | 0.4684 | 0.8235 | | 0.0015 | 10.0 | 550 | 0.4644 | 0.8529 | | 0.0013 | 11.0 | 605 | 0.4669 | 0.8235 | | 0.0012 | 12.0 | 660 | 0.4657 | 0.8235 | | 0.0011 | 13.0 | 715 | 0.4799 | 0.8235 | | 0.001 | 14.0 | 770 | 0.4817 | 0.8235 | | 0.0009 | 15.0 | 825 | 0.4998 | 0.8235 | | 0.0008 | 16.0 | 880 | 0.4964 | 0.8235 | | 0.0008 | 17.0 | 935 | 0.5025 | 0.8235 | | 0.0007 | 18.0 | 990 | 0.4954 | 0.8235 | | 0.0007 | 19.0 | 1045 | 0.4933 | 0.8235 | | 0.0007 | 20.0 | 1100 | 0.5014 | 0.8235 | | 0.0006 | 21.0 | 1155 | 0.4961 | 0.8235 | | 0.0006 | 22.0 | 1210 | 0.4955 | 0.8235 | | 0.0006 | 23.0 | 1265 | 0.4984 | 0.8235 | | 0.0006 | 24.0 | 1320 | 0.4988 | 0.8235 | | 0.0006 | 25.0 | 1375 | 0.4997 | 0.8235 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0